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Euler preconditioning has remarkable benefits in removing stiffness, making
systems of equations behave as a scalar equation, preserving accuracy, and decoupling
the Euler equations. Design criteria for optimal Euler preconditioning are discussed
that retain the basic preconditioning benefits and remove the causes of instabilities due
to the use of preconditioning. New families of 1D and 2D optimal Euler precondition-
ers are presented that may satisfy the design criteria in an optimal way. In particular,
focusing on resolution of the stability problem associated with stagnation points, a
stagnation preconditioner and a suboptimal Van Leer–Lee–Roe preconditioner are
studied. These preconditioners are less sensitive to flow-angle variation across cells
and/or produce a closer-to-orthogonal eigenvector system.c© 1998 Academic Press

1. INTRODUCTION

The technique of time marching has become a popular method for solving steady-state
problems in computational fluid dynamics. Its attraction is that it offers the freedom of
changing the governing partial differential equations as long as the initial/boundary-value
problem remains well posed and the steady solution is not affected. This freedom is no
luxury, as the time-accurate systems of the Euler and Navier–Stokes equations may exhibit
considerable stiffness, depending on the Mach and Reynolds numbers. For the Euler equa-
tions (Re= ∞), the degree of stiffness is measured by thecharacteristic condition number,
which is the ratio of the largest to the smallest characteristic speed. In very slow (M ↓ 0)
or transonic flow (M ≈ 1), the condition number increases without bound since the small-
est speed approaches zero. This slows down the convergence speed of any time-marching
method; in addition, for low Mach numbers standard discretizations lose their accuracy.
In the Navier–Stokes equations, dissipative time-scales are added to the wave-propagation
time-scales, creating more potential for stiffness.

The goal ofpreconditioningthe equations is to equalize these embedded time-scales by
changing the weights of the time-derivatives, thus making the equations better suited for
efficient and accurate numerical approximation. The most general local preconditioning is
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achieved by multiplying the local vector of time-derivatives by a locally evaluated, positive-
definite matrix. It changes the transient properties of the time-dependent solution, without
affecting the final steady-state solution of the equations. This, at least, is true on the level of
the partial differential equations. Preconditioning of the discretized equations may be done
in a way that does affect the discrete steady solution; this may actually be advantageous
with regard to stability and accuracy, as will appear later.

Chorin’s method [3] of artificial compressibility for the incompressible Euler equations
may be regarded as the the oldest contribution to the field. Starting from Chorin’s method,
Turkel [27–29] developed a two-parameter preconditioning matrix, of which the precon-
ditioning benefit is limited to the low Mach-number range. Merkleet al. demonstrated
significant convergence acceleration at low Mach numbers with a Euler preconditioner
closely related to the Chorin–Turkel family [16, 33] and later extended to the Navier–Stokes
equations. The only early preconditioners designed to have an effect over the entire Mach-
number range are those in Viviand’s four-parameter family [34]. These, however, are in-
spired by the isoenthalpic form of the Euler equations and do not have removal of stiffness
as their goal.

More recently, Van Leer, Lee, and Roe [31, 14], by searching a multi-parameter family,
derived an optimal preconditioning for the Euler equations, that is, one that achieves the
lowest possible characteristic condition number over the entire Mach-number range. They
demonstrated that the minimal achievable condition number deteriorates from unity in one
space dimension to 1/

√
1 − min(M2, M−2) in three dimensions. When combined with an

appropriate spatial discretization, the optimal preconditioning matrix yields the expected
convergence acceleration over a wide range of Mach numbers, while it manages to preserve
the solution accuracy at low Mach numbers. Another contribution by these authors is the
development of a design tool linking the physics of wave propagation in a fluid to the
numerical analysis. This is described in detail in Wen-Tzong Lee’s Ph.D. thesis [14]. Using
this tool, it is possible, for instance, to extend Turkel’s matrix so that it is optimal for all
Mach numbers [14].

One of the many remarkable benefits of an optimal preconditioning matrix is its ability
to make the system of Euler equations, whether differential or discretized, behave more
like a scalar equation. This property enables the development of explicit, multi-stage, time-
marching schemes that efficiently damp all high-frequency error modes, as desired in multi-
grid relaxation. The Ph.D. theses of Chang-Hsien Tai [26] and John Lynn [15] are devoted
to this subject.

Recently, it was discovered that the Van Leer–Lee–Roe preconditioning provides pre-
cisely the kind of decoupling of the Euler equations needed to accurately and efficiently ap-
ply multi-dimensional fluctuation-splitting schemes. An extensive account of this develop-
ment is contained in the Ph.D. thesis of Lisa Mesaros [17].

As to local preconditioning for the Navier–Stokes equations, the research findings are
more recent and more limited in number. Venkateswaranet al. [33, 2] have contributed
a valuable method of analysis by which the proper dependence of the preconditioning on
the Reynolds number can be determined. Godfreyet al. [10, 9, 7] circumvented the use
of such an analysis by composing a Navier–Stokes preconditioner from the optimal Euler
preconditioner and the Jacobi block for the discretized viscous/conductive terms.

Finally, Allmaras [1] and Pierce and Giles [21] consider pure block-Jacobi precondition-
ing for the discretized Navier–Stokes equations, equivalent to using block-Jacobi relaxa-
tion. This type of preconditioning always provides good high-frequency damping, which
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is desirable for multigrid relaxation, but does not reduce the condition number, nor does it
help preserve accuracy.

However, the numerical practices of these preconditioners show that different precon-
ditioners producing the same optimal wave pattern lead to strongly different convergence
histories. Since the wave patterns depend solely on the eigenvalues of the traveling wave
solution, this outcome indicates the importance of the other properties of the precondi-
tioned system such as corresponding eigenvectors. Lack of symmetrizability and positivity
of certain preconditioned systems can become an issue, since these are associated with
solution stability. When exploring the entire family of optimal preconditioners it therefore
is important to be guided by ahealthyeigenvector structure, i.e., not strongly deviating
from orthogonality, and the symmetrizability of the preconditioned system, as well as other
criteria which will be discussed in detail.

One of the major problems plaguing Euler preconditioners is that they usually lose
robustness around a stagnation point. This is due in part to eigenvector degeneration, as
shown by Darmofal and Schmid [4], and in part to the sensitivity of the preconditioned
system to the flow angle, which is ill-defined near a stagnation point. Another phenomenon
associated with the use of preconditioning is the generation of high transient vorticity near
a stagnation point.

The detailed analysis of Euler preconditioners and the instability around the stagnation
point is the purpose of this study. Some design criteria for more effective preconditioning
and a preconditioner family, which satisfies the previous criteria in an optimal way, will be
presented. Furthermore, some causes of instabilites at stagnation points and corresponding
remedies will be shown. The design of Navier–Stokes preconditioners will be presented in
a sequel paper [14a].

2. BASICS OF EULER PRECONDITIONING

A quasi-linear form of the Euler equations is expressed as

Ut + AUx + BUy + CUz = 0, (1)

and a symmetric quasi-linear form is much favored for this analysis. For this purpose the
symmetrization indicated by Turkel is attractive, as the state quantities are simple and the
three coefficient matrices become equally sparse. Thus, we define

dU =



dp
ρa

du

dv

dw

dp− a2dρ

 , (2)

wherea denotes the speed of sound; note that the fifth component is proportional to the
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differential of entropy. The corresponding coefficient matrices are

A =


u a 0 0 0
a u 0 0 0
0 0 u 0 0
0 0 0 u 0
0 0 0 0 u

 , B =


v 0 a 0 0
0 v 0 0 0
a 0 v 0 0
0 0 0 v 0
0 0 0 0 v

 , C =


w 0 0 a 0
0 w 0 0 0
0 0 w 0 0
a 0 0 w 0
0 0 0 0 w

.

(3)

The analysis can be simplified even more by assuming that the flow is in the positive
x-direction asv andw vanish andu becomes the full flow speed.

Wave propagation according to the Euler equations can be explored by inserting a plane-
wave solution propagating in the direction of some unit vectorn̂. Equation (1) reduces to

Ût + AnÛn = 0, (4)

with

An = (A, B, C) · n̂ = Anx + Bny + Cnz. (5)

The propagation speeds in this direction are the eigenvaluesλk of An,

λ1 = Eq · n̂ − a, λ2,3,4 = Eq · n̂, λ5 = Eq · n̂ + a; (6)

hereEq is the flow-speed vector, with magnitudeq. In practice, however, it is more useful to
consider the propagation of a point disturbance. Using a lesser known variant of Huygens’
principle, which says that the wave front created by a point disturbance is the envelope of
all plane-wave fronts that passed simultaneously through that point, we can determine the
shape of the front from (6).

Figure 1 shows wave propagation of 2D Euler equations atM = 0.5; the circles indicate
the plane-wave speeds created by a point disturbance and the dashed lines are all plane-
wave fronts, of which envelopes are physical wave fronts. A point disturbance in entropy
or vorticity remains a point propagating at the flow speed, while an acoustic disturbance
becomes a circle centered at that point with radius,a.

Figure 1 also illustrates that, for any Mach number, the fastest and the slowest waves
are always moving in the flow direction. For the Euler equations, thecondition numberis
simply defined as the ratio between the largest and smallest wave speeds. It is sometimes
called thecharacteristic condition number, in reference to the characteristic speeds of the
Euler system of equations. The mathematical expression for thecondition numberof a
matrixA is

K (A) = |λ|max

|λ|min
, (7)

where|λ|max and|λ|min are the largest and smallest absolute eigenvalues of matrixA.
The characteristic condition number determines the stiffness of the system of equations

when marching in time. With explicit local time-stepping, the allowable local time step is
limited by the fastest moving wave, since it must satisfy the CFL condition. During such a
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FIG. 1. Polar plot of plane-wave speeds (circle symbols) and the corresponding plane-wave fronts (dashed
lines) for the Euler equations without preconditioning;M = 0.5, flow angle= 30◦. (NB. The plane-wave fronts
are drawn only for every fourth point, otherwise the plot would become too crowded with wave-front lines.)

time step the slowest wave moves only over a fraction of the mesh width,

|λ|min1t = |λ|min

|λ|max
h = h

K(A)
, (8)

whereh is some representative mesh width; note that the condition number appears in the
denominator. Thus a large condition number reduces the efficiency of wave propagation,
needed for convergence. This remains true, to a lesser degree, for an implicit scheme, because
of time-step limitations related to approximate factorization or approximate inversions of a
time implicit operator.

Figure 2 shows the condition number for these regimes, indicating that the stiffness of the
original Euler equations increases beyond bound as the Mach number approaches 0 or 1.
This implies that, in fighting stiffness, preconditioning should focus on these incompressible
and transonic flow regions.

Minimizing the characteristic condition number means minimizing the spread among the
wave speeds, and therefore, increasing the efficiency of the wave-propagation mechanism.
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FIG. 2. Condition number for the Euler equations where 2D PC is the condition number after optimal 2D
preconditioning; 3D PC is the condition number after optimal 3D preconditioning. In 1D (not shown), perfect
preconditioning (K = 1) is possible for all Mach numbers.

The preconditioned system of equations thus becomes

P−1Ut + AUx + BUy + CUz = 0, (9)

or

Ut + P(AUx + BUy + CUz) = 0, (10)

whereP is the locally evaluated preconditioning matrix. The goal of preconditioning is to
make the envelope of the plane waves coincide as much as possible with a sphere centered
at the origin, for all possible Mach numbers and flow angles; in the preconditioning case,
wave speeds are decided byPAn, instead ofAn, in Eq. (5).

Using the wave-propagation analysis of the previous subsection, Lee, Van Leer, and Roe
[31, 14] developed an optimal symmetric preconditioner,

PVLR =



τ
β2 M2 − τ

β2 M 0 0 0

− τ
β2 M τ

β2 + 1 0 0 0

0 0 τ 0 0
0 0 0 τ 0
0 0 0 0 1

 , (11)

where β =
√

|1 − M2| and τ = min(β, β/M) =
√

1 − min(M2, M−2). This precon-
ditioning matrix achieves an optimal reduction of the 3D Euler condition number to



             

EULER PRECONDITIONER DESIGN 429

1/
√

1 − min(M2, M−2), as seen in Fig. 2. The convergence efficiency is enhanced most by
reduction of the condition number down to a perfect value of one at very low Mach numbers.
Even at the transonic region, the condition number is much smaller than in the unprecon-
ditioned case. However, 2D Euler preconditioning allows perfect conditioning(K = 1) for
supersonic flow; in subsonic flow, the condition number is the same as in the 3D case.

3. BENEFITS OF EULER PRECONDITIONING

The basic goal of preconditioning is to reduce the stiffness of the system of equations,
which, in turn, results in convergence acceleration for time-marching methods. This, though,
is not the only possible benefit of preconditioning.

Below we list all major benefits that so far have come to light in the development of
optimal local Euler preconditioning.

(1) Removal of stiffness.Local preconditioning can remove or reduce the stiffness of
the system of Euler equations caused by the range of the characteristic speeds, thus improv-
ing the convergence rate of any discrete marching scheme [31]. In the nearly incompressible
regime the stiffness can be entirely removed; in the transonic regime, it can be substantially
reduced. In numerical practice, the condition number becomes a function of the aspect
ratio(s) of the computational cell; in consequence, multidimensional preconditioners must
include aspect-ratio dependence.

(2) System behaves as a scalar equation.Preconditioning makes the system of Euler
equations behave more like a scalar equation, because the spread among the eigenvalues
is removed or reduced. This is also true for discretizations of the Euler equations. This
property is advantageous in designing and applying additional convergence-acceleration
techniques such as multi-stage marching schemes with optimal high-frequency damping,
and residual smoothing. Other techniques that may benefit are GMRES [35, 22], because
of the local clustering of eigenvalues, and approximate factorization, owing to a reduction
of the factorization error.

(3) Accuracy preservation for M→ 0. The accuracy of the discretization can be im-
proved by preconditioning if the artificial viscosity term is modified1 accordingly. In par-
ticular, the preconditioned equations retain the accuracy at a very low Mach number. This
is achieved by properly balancing the artificial-viscosity term with the inviscid flux term.
Without preconditioning, standard upwind and other schemes have an amount of artificial
viscosity that does not scale correctly forM → 0, and the accuracy deteriorates.

(4) Decoupling of Euler equations.The Van Leer–Lee–Roe, Turkel, and other pre-
conditionings have the property of being able to decouple the entropy advection equation
from the Euler equations. Moreover the Van Leer preconditioner allows perfect decoupling
of the system of 2D Euler equations into an acoustic and an advective part (both enthalpy
and entropy modes): in 2D the acoustic system only involves derivatives ofp andv. Such
decoupling allows the development of genuinely multidimensional discretizations [18, 17,
19, 20, 6, 5, 23, 24], as demonstrated by Roe (University of Michigan) and Deconinck (Von
Karman Institute, Belgium) and their students.

1 The modification was found to be needed in the first place to lift an unusually severe restriction on the time-step
[14, 31].



     

430 DOHYUNG LEE

4. DESIGN CRITERIA OF EULER PRECONDITIONING

As explained in the previous section, preconditioning provides many important advan-
tages on both p.d.e. and the numerical scheme level. However, adopting an artificial tech-
nique in a numerical scheme may also produce unnecessary extra drawbacks. To maintain
the advantages and to minimize the artificial disadvantages, it is important to construct a
proper analytic preconditioner because the above characteristics are strongly related to the
form of the preconditioner. Therefore, a list of design criteria for proper preconditioning is
documented below to retain the above benefits and to remove the causes of instabilities due
to preconditioning. Some of these design criteria must be definitely satisfied; others simply
lead to an improved preconditioning performance.

(1) Positivity.The preconditioning matrix must be positive-definite, in order to agree
with the boundary conditions that define the steady state. This criterion is fundamental, but
does not restrict the choice of preconditioners very much. Moreover, a small violation ap-
pears to be allowed. For example, the unmodified stagnation preconditioner to be discussed
is slightly non-positive but has been successful in computing stagnation flow.

(2) Symmetrizability.It is well known that a stable hyperbolic system of equations
must possess a similarity transformation to a symmetric system [11]. Hyperbolic systems
of conservation laws, such as the Euler equations and the equations of ideal magnetohydro-
dynamics, have this property; it also implies the existence of an extra entropy-conservation
law [11, 12]. While the Van Leer–Lee–Roe preconditioner is already symmetric for the
usual symmetrizing variables, other preconditioners such as Turkel’s and D. Lee’s stagna-
tion preconditioner lie at the limit of system symmetrizability and need a slight modification
to satisfy the symmetrizability condition. The symmetrizability is fundamental, although
it, too, appears to tolerate small violations, and leaves much freedom of choice.

(3) Reduction of spread among eigenvalues.Reducing the spread among the eigen-
values of the Euler equations is the prime design criterion in developing preconditioners.
Optimizing the condition number greatly reduces the choice of preconditioners, but still
leaves enough parameters to achieve other goals. By allowing a slightly suboptimal condi-
tion number, the freedom may be usefully enlarged.

(4) Decoupling into convective and acoustic equations.The ability of the precondi-
tioner to decouple the convective from the acoustic equations enables the implementation of
genuinely multidimensional discretizations [18, 17], and the use of different, best suitable
relaxation methods for the different types of equations [25]. There are different levels of
decoupling that may be pursued. If we insist on keeping only derivatives of pressure and
flow angles in the acoustic subsystem, the criterion is very restrictive: only the Van Leer–
Lee–Roe preconditioner and a suboptimal variant of it [32] can achieve this. On the other
hand, decoupling of the entropy equation only is a much less restrictive and still useful
condition. More restrictive is the condition that one of the convected quantities must be the
total enthalpy. By this criterion half of all optimal preconditioners must be discarded; these
are the transpose of the admissible ones. In general, if attention is given to the criterion (3),
reduction of eigenvalue speed, and (5), sparseness, the acoustic/convective decoupling will
appear as a by-product.

(5) Sparseness of preconditioner.This criterion is related to the decoupling criterion.
When trying to satisfy the various other criteria, we should look for the sparsest possi-
ble preconditioning matrix (using the symmetrizing variables) so as to avoid unnecessary
coupling of the equations.
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(6) Clustering of numerical eigenvalues for all M.Even when a preconditioner achi-
eves the eigenvalue optimization on the p.d.e. level, the discretized preconditioned equa-
tions may fail to produce the expected eigenvalue clustering. Consideration of the Fourier
footprint can, for instance, filter out incorrectly generalized preconditioners, previously
known only for a small Mach number; this criterion is not very restrictive.

(7) Proper balance between artificial dissipation and inviscid flux derivatives for
M → 0. To preserve the accuracy of solutions in the incompressible limit, the artificial-
viscosity and advection terms must scale similarly withM . This condition is not too restric-
tive; the explicit form of a preconditioner meeting this condition is known. The only widely
used preconditioning known to violate this condition is Jacobi preconditioning, which also
does not improve the condition number either.

(8) Insensitivity to flow angle for M→ 0. Preconditioners with a strong flow-angle
dependence may fail to produce converged solutions, especially if stagnation regions are
present. Insensitivity to the flow angle is desirable for stability and convergence. This
condition is not too restrictive, as it seems to be important only forM → 0.

(9) Non-parallel eigenvector structure, especially for M→ 0 and1. Loss of orthog-
onality among eigenvectors can cause a transient amplification of error components, pos-
sibly leading to instability. Most preconditioners produce pairs of parallel eigenvectors as
the Mach number approaches zero, but there appears to be a special class of optimal pre-
conditioners, including D. Lee’s stagnation preconditioner, that maintains a more nearly
orthogonal eigenvector structure. Eigenvector degeneration may also occur atM = 1 or any
other Mach number. This condition is quite restrictive, and one of the major concerns of
current research.

(10) Minimal artificial-vorticity production near a stagnation point.To prevent nu-
merical instability near a stagnation point, numerical vorticity production must be reduced.
This condition is not so restrictive; an explicit recipe to prevent artificial vorticity production
perfectly is developed by Roe [13].

(11) Continuity at M= 1. For a consistent preconditioning effect in the transonic
regime, the subsonic and supersonic branches of the preconditioner must have a smooth
connection, in some sense, at the sonic point, even though the matrix itself may be singular.
This condition is strongly discriminating, and a valuable selection criterion.

5. ROBUSTNESS ISSUES

Though local preconditioning provides benefits such as convergence speed-up and ac-
curacy improvement at low Mach number, these come at the expense of robustness. This
section focuses on a more detailed issue: reliability of preconditioner around flow singular-
ities such as stagnation points. The analysis for a general Euler preconditioner family and
the overall design criteria will be discussed from 1D to 2D in the following Section 6.

One serious problem associated with the use of local preconditioning, even if it does the
right thing in the limit of incompressibility, is that it commonly breaks downlocallywhen the
Mach number vanishes, i.e., in a stagnation point. It is evident that, for a preconditioner to be
called reliable, it must achieve stability for stagnation flow, since most practical numerical
problems have one or more local stagnation regions. In this section, we describe research
on the loss of stability in computing stagnating flow with the symmetric Van Leer–Lee–Roe
preconditioning [31], caused by flow-angle sensitivity, and how this sensitivity was reduced
in two totally different ways: (a) by modifying the matrix (Subsection 5.2); (b) by developing
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a completely new matrix with superior properties for low Mach numbers (Subsection 5.3).
In particular, the second method (b) produces the so-called “stagnation preconditioner,”
which was a basis for the low-speed regime in constructing optimal preconditioners for all
Mach numbers in Section 6.

5.1. Instability in a Stagnation Region

There are four reasons for the instability in a stagnation region.

(1) Unstable local time step.The first one is related to the small magnitude of the
Mach number. As the Mach number decreases in a stagnation region, the allowable local
time step for the preconditioned equations increases as 1/M , varying strongly from cell to
cell. It is easy to devise the preconditioned scheme unstable by local time-stepping; this
type of instability can be prevented by putting a safety factor or a cap on the time step.

(2) Degeneration of eigenvectors.Furthermore, the small Mach number reduces the
orthogonality between eigenvectors of the preconditioned matrix coefficients, increasing
the chance of transient growth, since the eigenvector basis is not effectively spanning the
space. This will happen for any value of the time step, and can be aggravated by large
velocity and/or pressure perturbations arising in the stagnation region. This happens for
instance when the calculation of flow over an airfoil is started “impulsively,” i.e., with free-
stream velocity everywhere. The perturbations near the stagnation point then are of the size
ρ∞u2

∞ ∼ p∞M2
∞, which is particularly large ifM∞ is not small [4].

(3) Flow angle sensitivity.The third reason comes from the fact that the flow angle
varies substantially around the stagnation point, and the preconditioned equations may be
over-sensitive to this variation.

(4) Vorticity production.In unpreconditioned Euler equations, vorticity is merely
transported with the flow speed; the vorticity is produced only due to interference of an
wall boundary or a shock. However, preconditioned p.d.e.’s may have artificial vorticity
production terms, of which effect is exaggerated around the stagnation point where velocity
and pressure fields vary substantially.

5.2. Flow-Angle Sensitivity and How to Reduce It

To explain the part of the stagnation instability that is due to the preconditioner’s sen-
sitivity to flow angle, we analyze the behavior of the Van Leer–Lee–Roe preconditioning
matrix (11) for low Mach numbers. For subsonic flow (β = τ = √

1 − M2), the matrix is
expressed in generalized Cartesian coordinates as

PVLRφ =



M2

β
− M

β
cosφ − M

β
sinφ 0

− M
β

cosφ
(

1
β

+ 1
)

cos2 φ + β sin2 φ
(

1
β

+ 1 − β
)

sinφ cosφ 0

− M
β

sinφ
(

1
β

+ 1 − β
)

sinφ cosφ
(

1
β

+ 1
)

sin2 φ + β cos2 φ 0

0 0 0 1

 ,

(12)

whereφ is the flow angle. Considering this matrix, the pattern of flow-angle dependence
among the matrix elements emerges as a possible source of trouble: the inner elements
(2, 2), (2, 3), (3, 2), and (3, 3), which depend onφ, remainO(1) for M ↓ 0, while the
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FIG. 3. Flow angle variation across cells.

remaining elements areO(M, M2). This makes the preconditioning particularly sensitive
to the flow angle when the Mach number approaches zero. In the case whereu andv are
small in absolute value, numerical perturbations may not be small compared to the values
of u andv, causingO(1) variations inφ and, therefore, in the four matrix elements. This is
believed to be at least one of the causes of numerical instability near a stagnation point, in
particular, when experienced with aconservativeupwind Euler scheme, associated with the
use of the above preconditioning matrix. The sensitivity can be eliminated when the angle
dependence is completely removed from the matrix elements, or it can be much reduced
when only the quadratic terms in cosφ and sinφ are removed.

In a conservative upwind scheme, the flow angle sensitivity is emphasized in the precon-
ditioned artificial-dissipation matrices [31], whose cell-face values become

P−1|PA|, P−1|PB|, (13)

rather than|A| and|B|, as in standard upwind schemes. In the update the spatial residual in
each cell is multiplied by the cell-centered value ofPφ , creating products

(Pφ)center
(
P−1

φ

)
face (14)

that may vary erratically near a stagnation point and deviate appreciably from the values
elsewhere in a smooth flow, which should be close to the identity matrix. If one simply
ignores these products, replacing them byI , the scheme becomes non-conservative and the
sensitivity toφ reduces significantly. Figure 3 shows the sort of large flow-angle variations
between the cell centers and interfaces that could cause the product (14) to differ appreciably
from I .

To further investigate the stagnation instability, a numerical study was performed as
illustrated in Fig. 4. Figure 4(a) shows velocity vectors in uniform slow flow (M = 0.1)
with an initial perturbation made by rotating the velocity over a certain angle in a single
cell. Figure 4(b) is the uniform steady solution, obtainable without any preconditioning,
or with a robust preconditioner. Note that the perturbation, although local, is not at all
small, so linear stability theory does not offer any guarantee here. It turned out, for instance,
that a 62◦ flow-angle rotation caused the solution to become unstable when advanced in
time by an explicit first-order upwind scheme preconditioned byPVLR with CFL number
0.7; see Table II. Using a smaller/larger CFL number will allow a larger/smaller angle-
perturbation.
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FIG. 4. Angle-perturbation test;M = 0.1.

The same scheme was also tested on a stagnation flow as shown in Fig. 5: the fluid
is flowing from the top and bottom boundaries to the left and right boundaries. Without
preconditioning the scheme reaches a reasonable-looking steady state (Fig. 5(a)). The insta-
bility from preconditioning is readily identified in Fig. 5(b) and appears to be due to totally
wrong flow angles.

The stagnation instability could be forestalled, but not avoided, even by taking smaller
time steps. Similar behavior was found when simulating subsonic flow over an airfoil at the
leading-edge stagnation point. Godfrey reports that implicit time integration can suppress
the instability if the grid used is not too fine [8].

FIG. 5. Instability of stagnating flow;M = 0.1.
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In contrast, it was reported by Tai [32] that schemes preconditioned by Turkel’s precon-
ditioning matrix (15), whether or not in conservation form, were less prone to the angle
instability. This, in fact, was our motivation to examine and compare preconditioning ma-
trices for arbitrary flow angle. The alleged greater robustness of Turkel’s preconditioner can
be understood from its structure. The Turkel matrix in 2D becomes

PT =


M2

β
0 0 0

− M
β

1 0 0

0 0 β 0

0 0 0 1

 ; (15)

for low-speed flow along thex-axis Turkel’s preconditioner reduces to

PT =


M2 0 0 0

−M 1 0 0

0 0 1 0

0 0 0 1

 . (16)

Note that, unlike (12), this matrix has the propertyP22 = P33, making the central block of
the matrix invariant under rotation. For an arbitrary flow angle it becomes

PTφ =


M2 0 0 0

−M cosφ 1 0 0

−M sinφ 0 1 0

0 0 0 1

 , (17)

which is well behaved forM → 0 since the flow-angle-dependent elements areO(M). The
angle-perturbation test (Table II) shows thatPT will stand an angle perturbation up to 140◦,
regardless of the CFL number, which is much larger than the value forPVLR. But it still
fails to calculate the stagnation flow of Fig. 5, indicating there is an additional cause of
stagnation instability.

It is not a priori clear that, in the limit ofM → 0, the matrix (16) is the only optimal
preconditioner with the property that its (2, 2) and (3, 3) elements are equal. It would be
preferable if an optimal matrix existed closer to Van Leer’s, i.e., more nearly symmetric, in
order to avoid losing symmetrizability; see Sections 6.1. Van Leeret al. [32] searched for
reduced flow-angle sensitivity among all optimal 2D preconditioners of the form

P =


a D E 0

d b F 0

e f c 0

0 0 0 1

 , (18)

under the constraintsb = c, f = −F , and proved there are none. Apparently, the extra
freedom in the elementse, E, f , andF does not pay off. They therefore recommend to
those wishing to stay within the family of optimal preconditioners to switch smoothly from
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PT to PVLR when varyingM from 0 to 1. This idea is similar to the switching presented
in Subsections 6.1 and 6.2, where the functionζ(M) is chosen to vary fromζ(0) = −1 to
ζ(1) = 1.

The suboptimal symmetric preconditioner with the above idea becomes

P =


α M2

β
−α M

β
0 0

−α M
β

α
(

1
β

+ 1
)

0 0

0 0 β 0

0 0 0 α

 , (19)

whereα(M) is the switch needed to link the sub-optimal matrix atM = 0 to the optimal
form for M > 0. In the numerical experiments in [32],α was chosen as a blending of the
form

α = 1

2
, 0 ≤ M ≤ 1

3
, (20)

α = 3

4

{
1 + 3

(
M − 1

2

) [
1 − 12

(
M − 1

2

)2
]}

,
1

3
< M <

2

3
, (21)

α = 1,
2

3
≤ M ≤ 1, (22)

which is a continuously differentiable function using a cubic to switch between the two
plateau values. Note that another simpler switch function can be used for the value ofα.

From numerical experiments performed with this matrix by Mesaros [32, 17], a striking
result was obtained. The symmetric preconditioner greatly improved anon-conservative
flow code, namely, the unstructured-grid code developed by Mesaros on the basis of
fluctuation-splitting ideas. Previously, the fluctuation-split scheme failed to converge for
flows around airfoils at low inflow Mach numbers, due to the leading-edge stagnation re-
gion. The sub-optimal symmetric preconditioner decoupled the equations just as the original
optimal Van Leer preconditioner, and made it possible to achieve accurate converged results
for arbitrarily low inflow Mach numbers on a fine grid. However, the conservative scheme
still lost robustness for low-speed flows. Conservative solutions could be obtained only after
the non-conservative scheme had handled the first transients.

5.3. Complete Removal of Flow-Angle Dependence

As shown in the previous section, the Van Leer–Lee–Roe preconditioning technique
becomes unstable near a stagnation point. The instability was attributed in part to the
incompatibility betweenPcenter andPface that appears in the artificial-viscosity flux. This
incompatibility increases as flow-angle variations increase when the Mach number locally
approaches zero as in a stagnation region. Therefore, one way to help prevent the instability
problem is to remove the incompatibility to the extent possible.

A useful requirement to impose onP is that the product of itself and its inverse, evaluated
at different neighboring locations, be close to the identity matrix. In the stagnation region, the
flow-angle is changing rapidly; therefore, we must concentrate on reducing the flow-angle
dependence inP.
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A stagnation preconditioneris hereby defined as a matrix that, without having any flow-
angle dependence, generates the same optimal wave patterns as the Van Leer–Lee–Roe and
Turkel preconditioners do. The general form of the subsonicstagnation preconditioning
matrix (b0 = 0) becomes

Pstag =


M2 ±M

√
1 + M2 cosψ ±M

√
1 + M2 sinψ

∓M
√

1 + M2 cosψ sin2 ψ − M2 cos2 ψ −(1 + M2) sinψ cosψ

∓M1 + M2 sinψ −(1 + M2) sinψ cosψ cos2 ψ − M2 sin2 ψ

 ,

(23)

whereψ is the hidden “principal angle” of the preconditioning matrix. Among the two
choices of sign in the preconditioner, the one with the positive sign in element (1, 2) gives
better convergence performance owing to a nearly orthogonal eigenvector structure, specif-
ically for low Mach numbers and for streamwise-moving plane waves. The other choice
produces an eigenvector structure with two identical acoustic eigenvectors for a certain pair
of streamwise moving plane waves at low Mach number, which slows down convergence
and may cause an instability.

Note that any value ofψ produces the same desirable optimal wave pattern. While this
is true at the p.d.e.-level, or, equivalently, for low-frequency Fourier modes, the principal
angle clearly shows up in the high-frequency modes of a discretization. It turns out that for
best results, the principal angle must be set equal to the local flow angle, and this so-called
streamwise stagnation matrixstill has the best performance in a stagnation region.

Whenψ is set equal to the local flow angle, and the latter is set to zero as usual in
our analysis, the matrix becomes the following sparsest form of (24). Thisstreamwise
stagnation matrix, presumably suitable for computing stagnating flow, is expressed as

Pstag,streamwise=


M2 M

√
1 + M2 0 0

−M
√

1 + M2 (b0 − 1)M2 0 0

0 0 1 0

0 0 0 1

 , (24)

whereb0 = 0 gives the optimal wave pattern for allM < 1, butb0 > 1 is needed for positive
definiteness ofP and symmetrizability of the preconditioned equations. As discussed ear-
lier, a proper preconditioning has to satisfy other criteria such as positive definiteness and
symmetrizability. With regard to positivityPstag,streamwiseyields

xTPx = M2x2
1 + (b0 − 1)M2x2

2 + x2
3, (25)

and therefore is positive definite only whenb0 > 1. The inequalityb0 > 1 also will satisfy
the symmetrizability condition. The consequence of a nonzerob0 is that it makes the acoustic
wave front non-symmetric about the flow-normal axis, causing loss of optimality for larger
values ofM .

The eigenvector structure ofPstag,streamwiseis much more closely orthogonal than that of
PVLR. Recall that, forPVLR, the enthalpy-convection eigenvector eventually collapses onto
an acoustic eigenvector at very low Mach number. In contrast,Pstag,streamwisedoes not cause
extreme departure from orthogonality.
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With Pstag,streamwise, the right eigenvectors for the waves traveling in the streamwise di-
rection become

R1 =


1

−M − M5/12

0

0

 ≈


1
0
0
0

 , R2 =


0
0
1
0

 ,

R3 =


M

−1 − M3/2 − M4/8

0

0

 ≈


0

−1
0
0

 , R4 =


0
0
0
1

 , (26)

as the Mach number approaches zero. TheRk represent eigenvectors, corresponding to
forward and backward acoustics, enthalpy and entropy waves, in sequence.

Just as its simplified form studied in Subsections 6.1 and 6.2, this preconditioner pre-
serves eigenvector orthogonality for waves moving in the streamwise direction, in the
incompressible limit. A similar study for the eigenvectors of waves moving in the normal to
the flow direction shows that the eigenvectors can be kept from moving too far away from
orthogonality: the eigenvectors do not make angles≤45◦ (or ≥135◦) with each other.

When performing a Fourier analysis of a difference scheme, properties at the p.d.e. level
show up as properties of low-frequency modes. Wave-speed equalization and flow-angle
insensitivity, such as obtained for the stagnation preconditioner, will thus be found for
low-frequency modes. The behavior of high-frequency modes, which do not follow the
p.d.e. accurately, may be totally different and, in fact, undesirable. To check the numerical
propagation and damping produced by the first-order upwind spatial operator for all waves
from low to high frequencies, a Fourier footprint (FFP) is produced forPstag. Figure 6 shows
the FFPs resulting when varying the difference between the preconditioner’s principal angle
and the actual flow angle. When the angle difference is zero, the shape of the FFP is the same
as that of the original Van Leer preconditioning. However, as the angle difference increases,
the shape of the FFP changes to a less orderly pattern in which some high frequency
eigenvalues cross the real axis, i.e., change sign in their imaginary part value. This means
that high-frequency waves may propagate in a direction opposite to that of low-frequency
waves, especially as the angle difference approaches 90◦.

If the principal angle is set to a certain fixed global angle and the angle difference with the
flow direction is too different, the high-frequency eigenvalues still may cause an instability,
in spite of the insensitivity of the low-frequency eigenvalues to the angle difference. There-
fore, preconditioning regardless of the flow angle remains a fiction. However,Pstag,streamwise

(ψ = φ) does a good job in stabilizing against the angle instability.

6. EULER PRECONDITIONER FAMILY

The design criteria in Section 4 cannot be satisfied by the same preconditioner, especially
in multidimensions; i.e., there is no preconditioner that meets all the above conditions. For
instance, reducing the sensitivity to the flow angle in the symmetric Van Leer–Lee–Roe
preconditioner leads to either a loss of optimality [32] or loss of symmetrizability. Table I
shows how the currently popular preconditioners score in each criteria; as can be seen, there
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FIG. 6. Fourier Footprint for the first-order upwind spatial operator with stagnation preconditioner. The angle
ψ − φ is the angle difference between the preconditioner’s principal angle and the actual flow angle.M = 0.1.

is no preconditioner that meets all criteria. Therefore, a particular philosophy and overall
understanding of each feature need to be discussed regarding the use of these criteria.

Among the criteria, positivity (1) and symmetrizability (2) must surely be satisfied to
secure basic well-posedness and stability of the equation system; this is usually verified
after the choice of preconditioners has been substantially narrowed down. Eigenvalue opti-
mization (3), while keeping the matrix sparse (5), is the single most important criterion for
reducing the vast number of possibilities to an manageable subset. At this point, decoupling
(4) will have been achieved to some degree. One must keep in mind that the degree of eigen-
value optimization can be reduced as a sacrifice to the other criteria to be satisfied. Next,
special conditions atM = 0 andM = 1 need to be considered. Among all sparse optimal
(or somewhat suboptimal) preconditioners we may select those that have good properties for
M → 0, as formulated in criteria 6 (accuracy), 8 (flow-angle insensitivity), 9 (non-parallel
eigenvectors), and 10 (minimal vorticity). When extending such preconditioners to higher
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TABLE I

Comparison of Preconditioners

Van Leer Turkel Stagnation Block–Jacobi

Removes stiffness caused Yes Yes Yes No
by spread in wave speeds

Concentrates high- Yes Yes Yes Yes
frequency eigenvalues

Preserves accuracy in Yes Yes Yes No
incompressilbe limit

Decouples acoustic from Yes Not Not No
advective equations perfectly prefectly

Eigenvectors well-behaved No No Yes Yes
in a stagnation point

Mach numbers, we must try to observe conditions 6 (numerical eigenvalue clustering), 11
(continuity atM = 1), and, again, 9 (non-parallel eigenvectors).

For construction of new preconditioners by the previous criteria, we start with exploring
preconditioning matrices for the 1D Euler equations. Many of the relevant properties of 2D
and 3D preconditioners are already found in their 1D counterpart, while application of the
design criteria is greatly simplified. This produces some guiding principles for selecting 2D
and, ultimately, 3D preconditioners. We also extend the 1D preconditioners to 2D, optimiz-
ing design criteria to some extent, excluding some design criteria such as minimization of
artificial vorticity production.

6.1. One-Dimensional Preconditioning Family

For the one-dimensional Euler equations,

∂U
∂t

= −A(U)
∂U
∂x

= Res(U), (27)

perfect preconditioning is possible, i.e., the characteristic condition number can be brought
down to unity. This is achieved, for instance, by multiplying the residual with the matrix2

PJ = q|A|−1, (28)

whereq is the flow speed. With the system of symmetrizing variables (2) the detailed matrix
becomes

PJ =


M(M+1+|M−1|)

2|M2−1| − M(M+1−|M−1|)
2|M2−1| 0

− M(M+1−|M−1|)
2|M2−1|

M(M+1+|M−1|)
2|M2−1| 0

0 0 1

 , (29)

2 This matrix is essentially the diagonal block arising in a Newton solver based on the first-order upwind spatial
Euler discretization. This is the only block remaining in point/Jacobi relaxation, therefore, I shall refer to the use
of (28) as Jacobi preconditioning.
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or

PJ−sub =


M

1−M2 − M2

1−M2 0

− M2

1−M2
M

1−M2 0

0 0 1

 , M < 1; (30)

PJ−super = Psuper =


M2

M2−1 − M
M2−1 0

− M
M2−1

M2

M2−1 0

0 0 1

 , M > 1. (31)

This yields the preconditioned system of equations

∂U
∂t

= −q|A|−1A
∂U
∂x

; (32)

its characteristic speeds are the eigenvalues ofq|A|−1A and all equal the flow speed in
absolute value. This preconditioning is unique for supersonic flow;3 for subsonic flow there
is substantial freedom in choosing a matrix that will achieve perfect preconditioning in the
sense of eigenvalue optimization [14]. From (29), (30), (31) it is seen thatPJ is not defined
for M = 1. It appears that in the preconditioned pressure and velocity equations the residual
is artificially blown up by a factor 1/|1 − M2|, in order to compensate for the vanishing
characteristic speedu − as. With regard to a numerical update we might interpret this as
using a time step for these equations that is inversely proportional to|1 − M2|. In practice
this time step must be limited in order to avoid nonlinear instabilities. Note that, when the
factor 1/|1 − M2| is taken out, the preconditioner is continuous atM = 1. Note further
that the entropy equation does not receive this large time step. The use of different1t for
different waves, possible through matrix preconditioning, has been called “characteristic
time-stepping” [31], in contrast to just “local time-stepping.”

If we allow asymmetry for an arbitrary subsonic optimal preconditioner we can find a
two-parameter family of matrices producing optimal eigenvalues,

P =
 a c 0

d b 0
0 0 1

 . (33)

When doing the eigenvalue optimization it turns out that only the productcd, not c or d
separately, appears in the constraints on the eigenvalues. This means that the transpose of
any optimal preconditioner of the form (33) is also optimal. This, by the way, is not just true
for one-dimensional asymmetric preconditioners but holds for any number of dimensions.
The proof is trivial; it follows after taking the transpose of the matrix whose eigenvalues
are sought.

3 In the supersonic case,PA has three identical eigenvalues(=q), and for the orthogonal eigenvector structure it
must be a multiple of the identity matrix. HenceP = qA−1 = q|A|−1. In earlier studies, we found the Jordan
block form can also keep the same eigenvalues of the system with more degrees of freedom. However, a unique
and simple form of the matrix can be obtained even for the additional requirement, orthogonality of the system.
Therefore, in order to avoid confusion and unnecessary analysis in obtaining the optimal supersonic preconditioner,
we decide to call the supersonic matrix unique.
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We shall now try to satisfy the design criteria of Section 4 with the general form (33),
suppressing the entropy entry. Most design criteria are relevant even in 1D, except those
regarding the vorticity and flow angle, while clustering of numerical eigenvalues becomes
trivial in 1D. Decoupling is also trivial, but, at the same time, has an interesting twist; this
will be explained at the end of this section.

Satisfying only accuracy, continuity, and optimization of eigenvalues among design cri-
teria, we can propose two families of preconditioners:

Pc =
(

M2

1−M2
M

1−M2 ζ

− M
1−M2 1 − ζ

1−M2

)
(34)

and

Pd =
(

M2

1−M2 − M
1−M2

M
1−M2 δ 1 − δ

1−M2

)
. (35)

This c– family of preconditioners can be divided into a 1D version of popular multi-
dimensional preconditioners such as symmetric Van Leer–Lee–Roe (ζ = −1), triangular
Turkel (ζ = 0), and antisymmetric stagnation preconditioners (ζ = 1). The symmetric Van
Leer–Lee–Roe preconditioner produces eigenvectors which become parallel as the Mach
number approaches zero, but a 45◦ angle is maintained as the Mach number approaches
one. Next, Turkel’s preconditioner causes the eigenvectors to degenerate for bothM = 0 and
M = 1. Finally, in D. Lee’s stagnation preconditioner, the eigenvectors do not degenerate
asM approaches zero,

Pc,st =
(

M2

1−M2
M

1−M2

− M
1−M2 − M2

1−M2

)
, Rc,st =

(
1 −M

−M 1

)
. (36)

For M ↑ 1, however, the eigenvectors ofPc,stA become parallel; also,Pc,st does not connect
smoothly toPsuper at M = 1. For the moment we shall simply label this member of thec-
family as “stagnation preconditioner,” although Lee’s stagnation preconditioner, as defined
in Subsection 5.3, has a more complicated dependence onM .

Interestingly enough, the transpose of these preconditioners, i.e., thed– family, not only
produces simpler preconditioned equations, as seen in (37), but also a better eigenvector
structure. In particular, the transpose of the stagnation preconditioner, withδ = 1, yields a
diagonalmatrixPd,stA, with perfectly orthogonal eigenvectors at any Mach numbers:

Pd,stA = as

(−M 0
0 M

)
, Rd,st =

(
0 1
1 0

)
. (37)

The transpose of Turkel’s preconditioner has the eigenvector structure

Rd,T =
(

0 −2M
1 1

)
, (38)

which still degenerates asM ↓ 0, but not asM ↑ 1.
Among the abovec– andd– families of preconditioners, a preconditioner with proper

ζ andδ functions can be formulated in order to satisfy all 1D design criteria. This new
preconditioner will be evaluated with regard to each design condition.
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(1) Accuracy and continuity.The artificial viscosity analysis of Turkelet al.[30] shows
that elementa must beO(M2) to preserve the accuracy for very low Mach numbers. Note
that this condition is not met in the preconditionerPJ−sub, in Eq. (30), since its element
a for subsonic flow equalsM/(1 − M2). However,c– andd– families reducea down to
M2/(1− M2), ensuring accuracy preservation in the incompressible limit. These also yield
the proper transition atM = 1 to the unique supersonic valueM2/(M2 − 1); see Eq. (31).

(2) Optimizing eigenvalues.The optimal eigenvalue restriction requires that the eigen-
valuesλ1, λ2 of PA must have opposite signs with the same quantity, i.e.,λ1,2 = ±M for
M < 1. The abovec– andd– families of preconditioners have these optimized eigenvalues.

(3) Positivity and symmetrizability.Next we consider positivity ofP and symmetriz-
ability of the preconditioned system.

DEFINITION 1. A matrix M is called positive definite if and only ifxT Mx > 0 for all
nonzerox; if M is positive definite, so isMT .

Considering first thec–family, with regard to positivity ofPc,

Ex · PcEx = 1

1 − M2

[(
M2x2

1 + ζ − 1

2
x2

)2

+
{

1 − M2 −
(

ζ + 1

2

)2
}

x2
2

]
; (39)

this is positive forEx 6= E0 if

−1 − 2
√

1 − M2 < ζ < −1 + 2
√

1 − M2. (40)

Figure 7 shows that the positivity can be preserved only if the preconditioner remains
inside of this elliptic domain. The stagnation preconditioner and its transpose matrix fail to
preserve the positivity for allM < 1, while Turkel’s are non-positive forM ≥ √

3/2; only
PVLR is positive-definite at allM < 1.

DEFINITION 2. If the equations can be put into the form

Q∂tv + A∗∂xv + B∗∂yv + C∗∂zv = 0, (41)

whereQ, A∗, B∗, C∗ are all symmetric, andQ is positive definite, then the system is called
symmetrizable, and it can be shown that the solution is stable in the norm(vTQv).

The limits of the symmetrizability interval are always positive, except one choice of
ζ(M):

ζ(M) = −M2. (42)

For this choice ofζ(M) the symmetrizability is lost by a non-positive definiteQ.
(4) Orthogonalizing eigenvectors.As has been shown already, the stagnation precon-

ditioner has orthogonal eigenvector structure when Mach number approaches zero and the
Van Leer–Lee–Roe preconditioner has an orthogonal system at sonic point; the small cir-
cles in Fig. 7 indicate the points of orthogonalizingζ values. To orthogonalize eigenvectors
for all Mach numbers, the inner product of preconditioned Jacobian eigenvectors needs to
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FIG. 7. Members of thec–family of preconditioners. Positivity is preserved only inside of this elliptic domain.

vanish.4 This can be achieved for allM by taking

ζ = 1 − 4M2

1 + M2
. (43)

This function connects the above orthogonalizing limit points through the positivity domain.
Figure 7 shows the graph of theζ(M) function in the positivity domain, and some other
choices ofζ , including the form (43) which orthogonalizes the eigenvectors ofPA. The
graph of the latter is tangent to the graph of (42), so the orthogonality choice preserves
symmetrizability.

Thed–family, attractive because of its algebraic simplicity, does not have such an out-
standing member. There is one choice for which the orthogonal eigenvector structure is
preserved, namely,δ(M) = 1 (transpose of the stagnation preconditioner), but this matrix
is not positive definite and does not connect smoothly to the supersonic branch (see Fig. 8).

The characteristic equations for the resultingc–family preconditioned system can be
written as

V(1)
t + uV(1)

x = 0 (44)

V(2)
t − uV(2)

x = 0, (45)

4 The alternate method is to force the resulting matrix to be symmetric (i.e.,PA = (PA)T).
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FIG. 8. Members of thed–family of preconditioners. Positivity is preserved only inside of this elliptic domain.

where

∂V(1) = ∂p

ρ
+ u∂u (46)

∂V(2) = (1 − 2M2 − ζ )
∂p

ρ
+ u(ζ + 1)∂u. (47)

The first characteristic equation of the forward moving wave describes convection of total
enthalpy in isentropic flow. As seen from the equation,ζ is dropped out, indicating that
the total enthaply is still preserved even after preconditioning. However, this total enthaply
convection is not valid for thed– family of the preconditioner. It is also seen that the
invariant value 1 in element (2, 2) of the optimal preconditioner becomes the scale factor
of the enthalpy-wave speed, and this remains true in 2D and 3D. In 1D the enthalpy wave
replaces the forward acoustic wave of the original system; in 2D and 3D, however, it replaces
a shear wave or, more precisely, the convection of the normal component of velocity.

The following analysis shows how the preconditioned equations are affected by the eigen-
vector angle. In the case of parallel eigenvectors, the same flow quantity (Riemann invariant)
has to propagate at two different characteristic speeds, which produces the ill-conditioned
unstable system. In contrast, with an orthogonal eigenvector structure independent quanti-
ties propagate with different velocity. This is illustrated below in a few examples.

By takingζ = −1 (VLR), the second invariant∂V(2) = ∂p
ρ

approaches the other invariant
(enthalpy) forM ↓ 0, but it remains distinct (although not completely independent) asM ↑ 1.
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For ζ = 0 (Turkel) it approaches the other invariant forM = 0 as well asM = 1. Forζ = 1
(D. Lee, stagnation), it approaches the other forM = 1, but forM = 0 it becomes completely
independent.

For ζ = 1 − 4M2

1+M2 , the top choice, we find

∂V(2) = M
∂p

ρ
− as∂u, (48)

which again remains distinct from∂V(1) for anyM ; in the (∂p
ρ

,∂u) plane, these two invariants
form orthogonal vectors. This choice produces a well-balanced preconditioned system,(

pt

ρas
+ Mut

)
+ u

(
px

ρas
+ Mux

)
= 0; (49)(

M
pt

ρas
− ut

)
− u

(
M

px

ρas
− ux

)
= 0. (50)

It resembles the original characteristic equations, preserving its orthogonal character with
the benefit of equal absolute characteristic speeds. AtM = 1 the characteristic variables
become equal to the original Riemann invariants; this remains so forM > 1 when using
Psuper = qA−1. This is as close to the original physics as one can ever get after precondi-
tioning.

6.2. Two-Dimensional Preconditioner Family

When charting the huge family of 2D Euler preconditioners, our thorough knowledge of
the 1D family offers very helpful guidance. It turns out that the useful part of the 2D family
is not so large, after all, with only one obvious extra parameter, and satisfying all the criteria
of Section 4 becomes impossible. Waves may now propagate in any direction, with speed
and the associated eigenvector depending on the propagation angleθ ; in addition there is
a structure of 3 rather than 2 eigenvectors to be kept from degenerating. In this section we
shall do an initial search for and evaluation of 2D preconditioners; the further subsections
of this section deal with meeting specific design criteria. Particular attention will be given to
optimization of eigenvalues for cells with an aspect ratioAR 6= 1, reducing the sensitivity
of the preconditioner to the flow angle, especially near a stagnation point (Subsection 5.3),
and to preventing eigenvector degeneration in the preconditioned system.

The 2D version of the Van Leer–Lee–Roe preconditioner (11) produces an unsteady
version of the characteristic equations of steady supersonic flow [17],

(∂t + βas∂s + as∂n)

(
∂p + ρq

β
∂v

)
= 0,

(∂t + βas∂s − as∂n)

(
∂p − ρq

β
∂v

)
= 0,

Ht + q Hs = 0,

St + qSs = 0,

(51)

whereH andSare total enthalpy and entropy, respectively.5

5 This matrix is not the only 2D supersonic preconditioner that can produce the ideal condition numberK = 1.
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In addition to enthalpy and entropy convected in the flow direction at the flow speedq,
the two steady-flow Riemann invariants are convected along the Mach lines,6 also at the
flow speed. Thus, the condition number equals 1 for allM > 1.

Using the sparseness pattern ofPsuper, we restrict our research for subsonic precondition-
ers to matrices of the form

Psub =


a c 0 0
d b 0 0
0 0 e 0
0 0 0 1

 , (52)

with only one additional parametere, compared to the 1D case. Since the entropy equation
is unaffected, we shall drop the entropy entries in what follows.

In comparison to the 1D case there is a fundamental difference. In 1D the forward
acoustic wave becomes the enthalpy wave; in 2D the enthalpy wave is still present, but
in each propagation direction a distinct forward quasi-acoustic wave can be identified: its
speed is ruled by the value of elemente.

(1) Optimizing eigenvalues and accuracy.By the study of wave propagation analysis,
we can propose a one-parameter family of matrices which produce optimal wave patterns
[13]; with c = Mζ(M)/

√
1 − M2 it takes the form

P =


M2

β
M
β

ζ 0

− M
β

1 − ζ

β
0

0 0 β

 , (53)

whereβ = √
1 − M2 for subsonic flow. Again, the Van Leer–Lee–Roe and Turkel matrices

are obtained forζ = −1 and 0, respectively. A variant of the 2D stagnation preconditioner,
which will be derived in the next section, can be obtained by settingζ = 1. Accuracy
preservation for the low Mach number can be met by setting elementa O(M2).

(2) Positivity.Positivity of P for the above choice ofζ(M) is easily established. The
positivity analysis for the 2Dζ–family is very similar to the 1D analysis in Subsection 6.1.
The essential change is that the denominator 1− M2 or β2, found in the elements ofP, is
replaced by

√
1 − M2, or β. The third component,x3, of the test vectorEx arising in the

2D analysis, does not affect positivity for their family of preconditioners. Therefore, for
positivity we require

−1 − 2
√

β < ζ < −1 + 2
√

β. (54)

When comparing this to the 1D variant, Eq. (40), we see that, owing to the replacement
of β by

√
β, the allowed range forζ(M) is a little wider in the 2D case. The conclusions

about the positivity of the various known preconditioners are not changed:ζ = 1 violates
positivity for all M , ζ = 0 violates positivity for the larger values ofM (in this case, for
M ≥

√
15
4 ), andζ = −1 and the function (56) both lie in the positivity range for allM .

6 The Mach lines are steady wave patterns at angles±µ, whereµ = arcsin(1/M) = arctan(1/
√

M2 − 1) is the
Mach angle.
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(3) Orthogonalizing eigenvectors.For orthogonalizing preconditioned systems, we
need to study the eigenvectors of matrix coefficients along and normal to the streamwise
directions. The right eigenvectors associated with enthalpy and two acoustic waves (λ1 = q,
λ2,3 = ±qβ for PA andλ1 = 0, λ2,3 = ±q for PB), respectively, are

RPA =
 M(1 + ζ ) 0 −M

β − M2 − ζ 0 1
0 1 0

 , RPB =
0 M −M

1 −1 1
0 β β

 . (55)

As can be seen from the previous eigenvector system,PB does not have any dependence
on the variation ofζ and two acoustic eigenvectors become parallel as the Mach number
approaches 1. However, this parallelity of eigenvectors at the sonic point is not much
of a problem because numerical practice shows the numerical instabilities with the use
of preconditioning usually occurs around the stagnation point. At a stagnation point,PB
maintains 45◦ between eigenvectors, which is an acceptable eigenvector structure. The
system still degenerates as a whole since no eigenvector spans the first row, but it is confined
to only normal to the flow direction (θ = 0). However, it appears to be enough to establish
eigenvector orthogonality only whenθ = 0, i.e.,PA, for all Mach numbers.

Orthogonality of the first and third eigenvectors ofPA occurs for a value ofζ(M) different
from (43), because of the appearance of

√
1 − M2 instead of 1− M2. The orthogonalizing

choice becomes

ζ(M) = β − 2M2

1 + M2
. (56)

This new preconditioner produces perfectly orthogonal eigenvectors for waves moving in the
streamwise direction for all Mach numbers, as well as satisfaction of symmetrizability and
positivity conditions. In spite of the complicated form of (56), the numerical implementation
of this matrix is quite simple because any matrix of the form (53) produces simply structured
artificial-viscosity matrices, which does not depend on the specific choice ofζ . It is noted
that the construction of artificial-viscosity matrices becomes complicated by the method of
limiting the value ofM in the preconditioner to prevent parallel eigenvectors, suggested by
Darmofal and Schmid [4].

The above analysis gives priority to a certain choice of design criteria, which, to some
extent, is a matter of taste, and clearly could vary with the intended application. When other
sets of criteria are emphasized, different matrices will result, since no matrix can satisfy all
criteria.

7. NUMERICAL STUDIES

For the validation of the stagnation preconditioner and comparsion on performance of
other Van Leer and Turkel preconditioners and those variants, three numerical tests were
performed. In those cases, the stagnation preconditioner improved stability as well as con-
vergence in stagnation regions.

The first numerical test is the calculation of the evolution of a one-point flow-angle
disturbance in a square domain, as in Subsection 5.2. (This model problem tests how well
flow-angle differences between the cells can be damped out. Figure 4 shows the initial
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TABLE II

Maximum Bearable Initial Perturbation Angle

CFL Un PC Van Leer Van Leer-sub Turkel Stagnation

0.5 180 129 137 149 161
0.7 180 61 133 149 155
0.8 180 50 94 149 117

Note. CFL= CFL number; Un PC= no preconditioning; Van Leer= Van Leer–Lee–Roe preconditioner;
Van Leer-sub= suboptimal variant of Van Leer–Lee–Roe preconditioner; Turkel= Turkel preconditioner;
Stagnation= stagnation preconditioner with the principal angle of local flow angle;M = 0.1, 10× 10 grid.

conditions and the resulting converged (uniform) solution. Table II shows the maximum
perturbation angles allowed by each of the preconditioners as a function of the CFL number
used. In case the streamwise stagnation preconditioner is used, the angle sensitivity appears
to be reduced in comparison with the Van Leer preconditioner and also (for the smaller CFL
numbers) the Turkel preconditioner.

The second test is the calculation of stagnation flow. As shown earlier in Fig. 5, the Van
Leer–Lee–Roe preconditioner (without “fix”) is not able to calculate stagnation flow and
neither is Turkel’s preconditioner. Note that the original form of Turkel’s preconditioner
is tested, meaning it does not contain a low Mach number cutoff on its element. However,
as shown by Fig. 9, the stagnation preconditioner is able to compute this flow successfully
in the half-plane domain. If the stagnation preconditioner is used withb0 = 0 in a full-
plane calculation, it produces a large amount of artificial vorticity near the stagnation point.
In consequence, the velocity vectors at the stagnation point are rotated counterclockwise,
eventually leading to slow divergence.

The preconditioned vorticity equation shows that there is too much vorticity production
by the combined velocity and pressure fields, and that the vorticity-convection term is not

FIG. 9. Flow field of half-plane stagnation flow, computed with the “streamwise stagnation preconditioner.”
The upper plane is forb0 = 0; the lower plane forb0 = 1.5.
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FIG. 10. Residual history for half-plane stagnation flow calculation. UnPC= unpreconditioned; SPC=
stagnation preconditioning; VLPC= Van Leer–Lee–Roe preconditioner (divergent calculation). Note: the Turkel
preconditioner also fails to converge in this test.

well defined, as it is in the unpreconditioned and symmetrically preconditioned cases. The
analysis shows thatb0 needs to be 2/M2 in order to maintain a well-defined vorticity-
convection term. However, choosingb0 > 2/M2 causes the loss of positivity and sym-
metrizability, and actually makes the system lose hyperbolicity. Instead, simply increasing
b0 to 1.5 reduces the vorticity production substantially.

In order to reduce the extent of vorticity production, the stagnation-flow calculations
were performed in the half-plane, with an imaginary-wall boundary (flow symmetry) con-
dition. With this set-up, the streamwise stagnation preconditioner succeeds in removing
the stagnation instability and speeding up the convergence without any problem. Figure 9
shows that the final converged solution does not have so much vorticity production, and
Fig. 10 demonstrates the convergence acceleration. It is seen that the stagnation precondi-
tioner greatly improves the convergence speed, while the Van Leer–Lee–Roe and Turkel
preconditioner blows-up due to the stagnation instability, and the unpreconditioned case
stalls due to the low Mach-number stiffness. It was observed that the increase ofb0 to 1.5
gives slightly faster convergence than withb0 = 0 since this reduces the vorticity production
and, in addition, ensures the positive-definiteness and symmetrizability of the system. The
same two numerical tests with the new stagnation-friendly all-purposeζ -preconditioner
(53), (56) shows that it is also robust with accelerated convergence slightly faster than the
stagnation preconditioner.

As another more practical numerical test, the Van Leer, Turkel, and stagnation precondi-
tioners were used in computing steady two-dimensional flows about a NACA 0012 airfoil,
showing how these behave in the low Mach-number limit. The computations were made
with first-order upwind differencing on twoO-grids, with 31× 16 and 61× 31 cells; the
grids are too coarse for good accuracy, but this brings out the differences in quality between
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FIG. 11. Residual history for low-speed flow around NACA 0012 airfoil;M = 0.01, 31× 16 grid; pressure-
extrapolation wall-boundary procedure; UnPC= Unpreconditioned; VL= Van Leer preconditioner; Turkel=
Turkel preconditioner; Stagnation= stagnation preconditioner. Theζ– preconditioner produces the same converg-
ence history as the stagnation preconditioner.

the solutions. Furthermore, on coarse grids it is not necessary to use the stagnation-point
“fix” of Darmofal and Schmidt [4] for the Van Leer and Turkel matrices. Time-marching
was done by a single-stage scheme, so there is no strong high-frequency damping to help
the local preconditioning in the accelerating convergence. The CFL number for the local
time step was set to 0.5.

Figure 11 shows the residual history on the 31×16 grid for low-speed flow,M∞ = 0.01,
α = 0◦. It is seen that all these preconditioners successfully accelerate the convergence
compared to the non-preconditioned scheme, with the stagnation preconditioner performing
best, and Turkel’s worst. Observe, however, the oscillatory residual convergence when
preconditioning is used. These oscillations are found to be generated at the leading and
trailing edges, and most likely are due to vorticity generation during wave reflections.

Figures 12–15 show several converged solutions obtained without and with precondi-
tioning. The pressure boundary condition is used for better numerical solution at a wall
boundary. As was discussed in Section 3, the unpreconditioned upwind scheme does not
preserve the accuracy in the low-speed limit. Figure 12 illustrates that, as the Mach number
goes down to 0, the solution quality gets more degraded. In contrast, calculation with the
Van Leer–Lee–Roe and stagnation preconditioners produces reasonably accurate solutions
even atM = 0.01, as can be seen in Figs. 13 and 15.

However, all those preconditioners without a low Mach-number cutoff on its element fail
to speed up the convergence with a more finer grid such as 121× 61. This indicates that the
stagnation preconditioner andζ– preconditioner may improve stability to some extent, but
those modifications and new development of a preconditioner on the matrix structure level
are still not enough to overcome completely so many instability causes in Subsection 5.1.
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FIG. 12. Mach number contours for unpreconditioned steady solution with the pressure-extrapolation bound-
ary condition; NACA 0012,M = 0.01, 31× 16 grid.

8. CONCLUSIONS

The traditional goal for the Euler preconditioning has been to produce optimal wave fronts
with the lowest possible condition number, because this minimization of the characteristic-
speed spread has a beneficial effect on the convergence acceleration. Further research has
shown that, in addition to the basic advantage of stiffness removal, the preconditioning
can produce other major benefits such as system behavior like a scalar equation, accuracy
preservation in the incompressible limit, and decoupling of the Euler equations into elliptic

FIG. 13. Mach number contours for preconditioned steady solution with the pressure-extrapolation boundary-
condition; NACA 0012,M = 0.01, 31× 16 grid; Van Leer preconditioner. The same solution is obtained with
the stagnation andζ– preconditioner.
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FIG. 14. Mach number contours for unpreconditioned steady solution with pressure-extrapolation boundary-
condition; NACA 0012,M = 0.01, 61× 31 grid.

and hyperbolic parts. However, in spite of these benefits, the use of preconditioning until
now has been severely restricted, mainly because of the instability arising near a stagnation
point. Analyzing the above benefits and problems in detail yields a list of design criteria
for preconditioners: positivity, symmetrizability of the preconditioned system, reduction
of eigenvalue spread, decoupling within the system, sparseness, clustering of numerical
eigenvalues, accuracy preservation in the incompressible limit, flow-angle insensitivity, non-
parallelism of eigenvectors, minimum vorticity production, and continuity at a sonic point.
We have discussed cause and effect at some length with regard to all these design criteria.

FIG. 15. Mach number contours for preconditioned steady solution with pressure-extrapolation boundary-
condition; NACA 0012,M = 0.01, 61× 31 grid; Van Leer preconditioner. The same solution is obtained with
the stagnation andζ– preconditioner.



         

454 DOHYUNG LEE

Having clearly defined the above design criteria, it becomes possible to derive families of
1D and 2D preconditioning matrices that meet most design criteria. In particular, the attempt
to develop a new preconditioner by constructing an orthogonal eigenvector structure without
any “fix” or “limiter” in the entries for low Mach number is a fresh approach, because
the manipulation of eigenvectors in addition to eigenvalues has been regarded in a very
limited way or considered nearly impossible. This construction of non-parallel eigenvectors
was motivated by the success of the “stagnation preconditioner,” which was designed in
order to reduce the angle dependence in a preconditioner, but later was proven to prevent
degeneration of eigenvectors in the low-speed limit.

The robustness problem related to stagnation instability involves a number of detailed
issues, such as flow-angle sensitivity of the preconditioner, parallel eigenvectors, and exces-
sive artificial vorticity production. To help cure the instability, special boundary procedures
were suggested; more importantly, the newly developed stagnation preconditioner has non-
parallel eigenvectors and a weak angle dependence for low Mach numbers, and serves as a
model for constructing more robust preconditioned systems.

We have demonstrated that the stagnation preconditioner and a sub-optimal variant of
the Van Leer–Lee–Roe preconditioner, the result of another attempt to improve robustness,
can sustain a larger flow-angle difference between cells in the flow-angle perturbation test.
Furthermore, the stagnation preconditioner is the only one, among preconditioners tested,
that can converge to the steady solution of the low-speed stagnating-flow test problem.
Some calculations of inviscid flow around airfoils on coarse grids are presented, showing,
among other things, that the stagnation and Van Leer preconditioners are comparable in
their ability to accelerate convergence and preserve accuracy in the incompressible limit.

In some practical tests with much finer grids, the stagnation andζ– preconditioners, with-
out the use of a cutoff for the preconditioner element, still fall short in producing completely
stable solutions. This implies that the stagnation andζ– preconditioners need a combina-
tion of other numerical techniques such as cutoff and modification of the artificial-viscosity
treatment for more practical usage. However, more importantly, these new preconditioners
provide much improvement with regard to many design criteria, as has been shown by
analysis as well as some numerical tests.

APPENDIX 1: EQUATION FOR THE WAVE-FRONT ENVELOPE

In Fig. 16,L1 andL2 are two wave-front lines coresponding to wave-speedsλ1 andλ2

and wave-anglesθ1 andθ2.
Their intersection point (X, Y) can be obtained by solving the two equations

Y − λ1 sinθ1

X − λ1 cosθ1
= − 1

tanθ1
, (57)

Y − λ2 sinθ2

X − λ2 cosθ2
= − 1

tanθ2
, (58)

where Eq. (57) represents the points of lineL1 and Eq. (58) represents the points of lineL2.
To solve for the wave-front envelope, first letL2 approachL1; this means

λ2 = λ1 + λ1
′1θ,

θ2 = θ1 + 1θ.
(59)
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FIG. 16. Two intersecting wave-front lines.

Substituting forλ2 from Eq. (59) in Eq. (58), and solving simultaneously with Eq. (57) for
(X, Y), we obtain, for1θ → 0,

X = λ1 cosθ1 − λ1
′ sinθ1,

Y = λ1 sinθ1 + λ1
′ cosθ1.

Second, replaceλ1 andθ1 by λ(θ) andθ so as to represent all possible wave-angles in the
envelope; in vector/matrix notation this gives

(
X
Y

)
=

[
cosθ −sinθ

sinθ cosθ

] (
λ(θ)

λ′(θ)

)
. (60)

This is the equation for the wave-front envelope.

APPENDIX 2: VARIOUS EULER PRECONDITIONERS AND ARTIFICIAL

VISCOSITY MATRICES

The Van Leer–Lee–Roe preconditioner is

PVLR =


τ
β2 M2 − τ

β2 M 0 0

− τ
β2 M τ

β2 + 1 0 0

0 0 τ 0
0 0 0 1

 ,

(61)

PVLR−subotpimal=


α M2

β
−α M

β
0 0

−α M
β

α
(

1
β

+ 1
)

0 0

0 0 β 0

0 0 0 α

 ,

whereβ =
√

|1 − M2|, τ = β (β/M for supersonic), andα = 1
2 for low M and 1 for high

M . The sub-optimal version was developed for reducing the flow-angle sensitivity.
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The Turkel preconditioner is

PT =


M2

β
0 0 0

− M
β

1 0 0

0 0 β 0
0 0 0 1

 , PT−mod =


(1 + ε) M2

β
0 0 0

− M
β

1 0 0

0 0 1 0
0 0 0 1

 , (62)

with ε > 0 for symmetrizability. In numerical tests, the original Turkel preconditioner is
used with setting the (3, 3) element to 1. The transpose ofPT produces no artificial vorticity.

The stagnation preconditioner is

Pstag,streamwise=


M2 M

√
1 + M2 0 0

−M
√

1 + M2 (b0 − 1)M2 0 0

0 0 1 0
0 0 0 1

 , (63)

whereb0 = 0 for the optimal wave pattern. The modified version is withb0 > 1 for positive
definiteness and symmetrizability.

Theζ– preconditioner for all purposes is

Pζ =


M2

β
ζ M

β
0 0

− M
β

− ζ

β
+ 1 0 0

0 0 β 0
0 0 0 1

 , (64)

whereζ = −1 for the Van Leer preconditioner,ζ = 0 for the Turkel preconditioner, andζ = 1
for an approximation of the stagnation preconditioner withb0 = 1.5 in the incompressible
limit.

The preconditioned residual computed by integration over a finite volume (a quadrilateral
cell) is expressed conservatively for artificial viscosity,

(P̃ Res)i, j = − 1

Vi, j
Pi, j

4∑
k=1

{Φk1Sk}i, j , (65)

whereVi, j is the area of the cell,1Sk is the length of thekth cell face,Φk is flux normal to
thekth cell face, andPi, j is the preconditioner which is evaluated at cell center.

For the conservative scheme, the modified flux becomes

Φmod
Euler,upwind = 1

2
(ΦL + ΦR) − 1

2
|Ω̂|mod(UR − UL), (66)

where the modified artificial-viscosity matrix|Ω̂|mod is defined as

|Ω̂|mod = MQ
(
P̂−1

2D|P̂2DÂ‖ cos(φ‖ − θ)| + P̂−1
2D|P̂2DÂ⊥ cos(φ⊥ − θ)|) Q−1M−1, (67)

whereQ, Q−1 are transformations between Cartesian coordinates and flow-aligned coor-
dinates, andM , M−1 are transformations between the different set of variables. In order to
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avoid a stagnation instability problem, the factorsP−1 are needed to (more or less) cancel
the preconditioning matrix̃Pi, j multiplying the full residual.

For symmetrizing variables and stream-aligned coordinates,PVLR and PVLR−subotpimal

produce the artificial-viscosity matrices

P̂−1
2D|P̂2DÂ‖| = âs


|M̂2−1|+1

M̂
1 0 0

1 M̂ 0 0
0 0 M̂ 0
0 0 0 M̂

 ;

(68)

P̂−1
2D|P̂2DÂ⊥| = âs


β̂

M̂
√

α̂
0 0 0

0 0 0 0

0 0 M̂
√

α̂

β̂
0

0 0 0 0

 .

With the original Turkel preconditioner (assumingαT = 1+ β2
T , otherwise different for-

mulas are obtained) [27–30],

P̂−1
2D|P̂2DÂ‖| = âs



√
1−M̂

2

β̂T
0 0 0

M̂ α̂T

√
1−M̂

2

β̂T
β̂T

√
1 − M̂

2
0 0

0 0 M̂ 0
0 0 0 M̂

 ;

(69)

P̂−1
2D|P̂2DÂ⊥| = âs


1

β̂T
0 0 0

M α̂T

β̂T
0 0 0

0 0 β̂T 0
0 0 0 0

 .

Note that the optimal value ofβT is M , which further simplifies the above formulas.
With Pstag,streamwise(b0 = 0), these matrices become

P̂−1
2D|P̂2DÂ‖| = âs



−M̂

√
1 − M̂

2 −
√

1+M̂
2

M̂
2
√

1−M̂
2

0 0

√
1+M̂

2

M̂
2
√

1−M̂
2

M̂

√
1 − M̂

2
0 0

0 0 M̂ 0
0 0 0 M̂


;

(70)

P̂−1
2D|P̂2DÂ⊥| = âs


1
M̂

0 0 0
0 0 0 0
0 0 M̂ 0
0 0 0 0

 .
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For the all purposeζ–family preconditioner,

P̂−1
2D|P̂2DÂ‖| = âs



|M̂2−1|+1
M̂

− 2β̂(ζ+1)

M̂(1+β̂)
1 0 0

1 − β̂(ζ+1)

(1+β̂)
M̂ 0 0

0 0 M̂ 0

0 0 0 M̂

 ;

(71)

P̂−1
2D|P̂2DÂ⊥| = âs


β̂

M̂
0 0 0

0 0 0 0

0 0 M̂
β̂

0

0 0 0 0

 .
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