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Euler preconditioning has remarkable benefits in removing stiffness, making
systems of equations behave as a scalar equation, preserving accuracy, and decoupling
the Euler equations. Design criteria for optimal Euler preconditioning are discussed
that retain the basic preconditioning benefits and remove the causes of instabilities due
to the use of preconditioning. New families of 1D and 2D optimal Euler precondition-
ers are presented that may satisfy the design criteria in an optimal way. In particular,
focusing on resolution of the stability problem associated with stagnation points, a
stagnation preconditioner and a suboptimal Van Leer—Lee—Roe preconditioner are
studied. These preconditioners are less sensitive to flow-angle variation across cells
and/or produce a closer-to-orthogonal eigenvector Systesmegs Academic Press

1. INTRODUCTION

The technique of time marching has become a popular method for solving steady-
problems in computational fluid dynamics. Its attraction is that it offers the freedon
changing the governing partial differential equations as long as the initial/boundary-v
problem remains well posed and the steady solution is not affected. This freedom
luxury, as the time-accurate systems of the Euler and Navier—Stokes equations may €
considerable stiffness, depending on the Mach and Reynolds numbers. For the Euler
tions (Re= 00), the degree of stiffness is measured bydharacteristic condition number
which is the ratio of the largest to the smallest characteristic speed. In very Blawd}
or transonic flow M ~ 1), the condition number increases without bound since the sm
est speed approaches zero. This slows down the convergence speed of any time-mze
method; in addition, for low Mach numbers standard discretizations lose their accu
In the Navier—Stokes equations, dissipative time-scales are added to the wave-propa
time-scales, creating more potential for stiffness.

The goal ofpreconditioningthe equations is to equalize these embedded time-scale:
changing the weights of the time-derivatives, thus making the equations better suite
efficient and accurate numerical approximation. The most general local preconditioni
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achieved by multiplying the local vector of time-derivatives by a locally evaluated, positiv
definite matrix. It changes the transient properties of the time-dependent solution, with
affecting the final steady-state solution of the equations. This, at least, is true on the levi
the partial differential equations. Preconditioning of the discretized equations may be d
in a way that does affect the discrete steady solution; this may actually be advantage
with regard to stability and accuracy, as will appear later.

Chorin’s method [3] of artificial compressibility for the incompressible Euler equatior
may be regarded as the the oldest contribution to the field. Starting from Chorin’s meth
Turkel [27—-29] developed a two-parameter preconditioning matrix, of which the precc
ditioning benefit is limited to the low Mach-number range. Merkteal. demonstrated
significant convergence acceleration at low Mach numbers with a Euler preconditio
closely related to the Chorin—Turkel family [16, 33] and later extended to the Navier—Stol
equations. The only early preconditioners designed to have an effect over the entire M
number range are those in Viviand's four-parameter family [34]. These, however, are
spired by the isoenthalpic form of the Euler equations and do not have removal of stiffn
as their goal.

More recently, Van Leer, Lee, and Roe [31, 14], by searching a multi-parameter fam
derived an optimal preconditioning for the Euler equations, that is, one that achieves
lowest possible characteristic condition number over the entire Mach-number range. T
demonstrated that the minimal achievable condition number deteriorates from unity in
space dimension to/1/1 — min(M2, M~2) in three dimensions. When combined with an
appropriate spatial discretization, the optimal preconditioning matrix yields the expec
convergence acceleration over a wide range of Mach numbers, while it manages to pres
the solution accuracy at low Mach numbers. Another contribution by these authors is
development of a design tool linking the physics of wave propagation in a fluid to t
numerical analysis. This is described in detail in Wen-Tzong Lee’s Ph.D. thesis [14]. Us
this tool, it is possible, for instance, to extend Turkel's matrix so that it is optimal for a
Mach numbers [14].

One of the many remarkable benefits of an optimal preconditioning matrix is its abili
to make the system of Euler equations, whether differential or discretized, behave n
like a scalar equation. This property enables the development of explicit, multi-stage, tir
marching schemes that efficiently damp all high-frequency error modes, as desired inm
grid relaxation. The Ph.D. theses of Chang-Hsien Tai [26] and John Lynn [15] are devo
to this subject.

Recently, it was discovered that the Van Leer—Lee—Roe preconditioning provides f
cisely the kind of decoupling of the Euler equations needed to accurately and efficiently
ply multi-dimensional fluctuation-splitting schemes. An extensive account of this develc
ment is contained in the Ph.D. thesis of Lisa Mesaros [17].

As to local preconditioning for the Navier—Stokes equations, the research findings
more recent and more limited in number. Venkateswataal. [33, 2] have contributed
a valuable method of analysis by which the proper dependence of the preconditioning
the Reynolds number can be determined. Godéegl. [10, 9, 7] circumvented the use
of such an analysis by composing a Navier—Stokes preconditioner from the optimal El
preconditioner and the Jacobi block for the discretized viscous/conductive terms.

Finally, Allmaras [1] and Pierce and Giles [21] consider pure block-Jacobi preconditic
ing for the discretized Navier—Stokes equations, equivalent to using block-Jacobi rele
tion. This type of preconditioning always provides good high-frequency damping, whi
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is desirable for multigrid relaxation, but does not reduce the condition number, nor do
help preserve accuracy.

However, the numerical practices of these preconditioners show that different pre
ditioners producing the same optimal wave pattern lead to strongly different converge
histories. Since the wave patterns depend solely on the eigenvalues of the traveling
solution, this outcome indicates the importance of the other properties of the precc
tioned system such as corresponding eigenvectors. Lack of symmetrizability and posi
of certain preconditioned systems can become an issue, since these are associate
solution stability. When exploring the entire family of optimal preconditioners it therefc
is important to be guided by kealthyeigenvector structure, i.e., not strongly deviatin
from orthogonality, and the symmetrizability of the preconditioned system, as well as o
criteria which will be discussed in detail.

One of the major problems plaguing Euler preconditioners is that they usually |
robustness around a stagnation point. This is due in part to eigenvector degeneratic
shown by Darmofal and Schmid [4], and in part to the sensitivity of the preconditior
system to the flow angle, which is ill-defined near a stagnation point. Another phenome
associated with the use of preconditioning is the generation of high transient vorticity
a stagnation point.

The detailed analysis of Euler preconditioners and the instability around the stagne
point is the purpose of this study. Some design criteria for more effective preconditior
and a preconditioner family, which satisfies the previous criteria in an optimal way, will
presented. Furthermore, some causes of instabilites at stagnation points and correspc
remedies will be shown. The design of Navier—Stokes preconditioners will be presente
a sequel paper [14a].

2. BASICS OF EULER PRECONDITIONING

A quasi-linear form of the Euler equations is expressed as

Ui + AU, + BU, + CU, = 0, 1)

and a symmetric quasi-linear form is much favored for this analysis. For this purpose
symmetrization indicated by Turkel is attractive, as the state quantities are simple an
three coefficient matrices become equally sparse. Thus, we define

dp
pa

du
du = dv ; 2

dw
dp—a?dp

wherea denotes the speed of sound; note that the fifth component is proportional to
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differential of entropy. The corresponding coefficient matrices are

uao0®Oo0O® 0 v 0aO00@0 w 0 0 a O
auo0o?o0 Ov 00O Ow 0O 0O
A=|(0 0u 0 0], B=]a 0wv 0 0], C=|(0 0w 0 O
0 0OuoO 000vO a 0 0w O

0 0O0Ou 0 00 Ow 0 00 0w

®3)

The analysis can be simplified even more by assuming that the flow is in the posif
x-direction asy andw vanish andi becomes the full flow speed.

Wave propagation according to the Euler equations can be explored by inserting a pl;
wave solution propagating in the direction of some unit vetit@quation (1) reduces to

Uy +AnUn = 0, (4)
with
A, = (A,B,C)-fi=An,+Bny+Cn,. (5)
The propagation speeds in this direction are the eigenvaluetA,
Mm=4q-A-a, A234=Q-A, As=0-0+a; (6)

hereg is the flow-speed vector, with magnitudgeln practice, however, it is more useful to
consider the propagation of a point disturbance. Using a lesser known variant of Huyge
principle, which says that the wave front created by a point disturbance is the envelop
all plane-wave fronts that passed simultaneously through that point, we can determine
shape of the front from (6).

Figure 1 shows wave propagation of 2D Euler equationd at 0.5; the circles indicate
the plane-wave speeds created by a point disturbance and the dashed lines are all
wave fronts, of which envelopes are physical wave fronts. A point disturbance in entrc
or vorticity remains a point propagating at the flow speed, while an acoustic disturbal
becomes a circle centered at that point with radius,

Figure 1 also illustrates that, for any Mach number, the fastest and the slowest we
are always moving in the flow direction. For the Euler equations¢timaition numbers
simply defined as the ratio between the largest and smallest wave speeds. It is some
called thecharacteristic condition numbeim reference to the characteristic speeds of th
Euler system of equations. The mathematical expression focdhdition numberof a
matrix A is

_ | 2| max

KA) =
( ) |)L|min7

)
where|A|max @nd|A|min are the largest and smallest absolute eigenvalues of n#atrix

The characteristic condition number determines the stiffness of the system of equat
when marching in time. With explicit local time-stepping, the allowable local time step
limited by the fastest moving wave, since it must satisfy the CFL condition. During suct
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FIG. 1. Polar plot of plane-wave speeds (circle symbols) and the corresponding plane-wave fronts (ds
lines) for the Euler equations without preconditionim@;= 0.5, flow angle= 30°. (NB. The plane-wave fronts
are drawn only for every fourth point, otherwise the plot would become too crowded with wave-front lines.)

time step the slowest wave moves only over a fraction of the mesh width,

|)L|minh _ h
|2 I max K(A)’

|)\|minAt = (8)

whereh is some representative mesh width; note that the condition number appears i
denominator. Thus a large condition number reduces the efficiency of wave propaga
needed for convergence. Thisremainstrue, to alesser degree, foranimplicit scheme, be
of time-step limitations related to approximate factorization or approximate inversions
time implicit operator.

Figure 2 shows the condition number for these regimes, indicating that the stiffness o
original Euler equations increases beyond bound as the Mach number approaches C
This implies that, in fighting stiffness, preconditioning should focus on these incompress
and transonic flow regions.

Minimizing the characteristic condition number means minimizing the spread among
wave speeds, and therefore, increasing the efficiency of the wave-propagation mecha
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FIG. 2. Condition number for the Euler equations where 2D PC is the condition number after optimal -
preconditioning; 3D PC is the condition number after optimal 3D preconditioning. In 1D (not shown), perfe
preconditioning K = 1) is possible for all Mach numbers.

The preconditioned system of equations thus becomes

P~1U; + AUy + BUy + CU, = 0, (9)
or

Ut + P(AUy + BU, + CU,) =0, (10)

whereP is the locally evaluated preconditioning matrix. The goal of preconditioning is t
make the envelope of the plane waves coincide as much as possible with a sphere cer
at the origin, for all possible Mach numbers and flow angles; in the preconditioning ca
wave speeds are decided B, instead ofA,,, in Eq. (5).

Using the wave-propagation analysis of the previous subsection, Lee, Van Leer, and
[31, 14] developed an optimal symmetric preconditioner,

EM2 —TM 0 0 O
~&ZM 5+1 0 0 0
Pur=1 o o ¢ ool (11)
0 0 070
0 0o 001

where g=+/|1— M2| and t = min(, 8/M)=+/1— min(M2, M-2). This precon-
ditioning matrix achieves an optimal reduction of the 3D Euler condition number
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1/4/1—min(M2, M-2), as seen in Fig. 2. The convergence efficiency is enhanced mos
reduction of the condition number down to a perfect value of one at very low Mach numb
Even at the transonic region, the condition number is much smaller than in the unpre
ditioned case. However, 2D Euler preconditioning allows perfect conditiaidng 1) for

supersonic flow; in subsonic flow, the condition number is the same as in the 3D case

3. BENEFITS OF EULER PRECONDITIONING

The basic goal of preconditioning is to reduce the stiffness of the system of equati
which, inturn, results in convergence acceleration for time-marching methods. This, tho
is not the only possible benefit of preconditioning.

Below we list all major benefits that so far have come to light in the development
optimal local Euler preconditioning.

(1) Removal of stiffnestocal preconditioning can remove or reduce the stiffness |
the system of Euler equations caused by the range of the characteristic speeds, thus in
ing the convergence rate of any discrete marching scheme [31]. In the nearly incompres
regime the stiffness can be entirely removed; in the transonic regime, it can be substan
reduced. In numerical practice, the condition humber becomes a function of the as
ratio(s) of the computational cell; in consequence, multidimensional preconditioners r
include aspect-ratio dependence.

(2) System behaves as a scalar equatlreconditioning makes the system of Eule
equations behave more like a scalar equation, because the spread among the eiger
is removed or reduced. This is also true for discretizations of the Euler equations.
property is advantageous in designing and applying additional convergence-acceler
techniques such as multi-stage marching schemes with optimal high-frequency dam
and residual smoothing. Other techniques that may benefit are GMRES [35, 22], bec
of the local clustering of eigenvalues, and approximate factorization, owing to a reduc
of the factorization error.

(3) Accuracy preservation for M> 0. The accuracy of the discretization can be im
proved by preconditioning if the artificial viscosity term is modifietcordingly. In par-
ticular, the preconditioned equations retain the accuracy at a very low Mach number.
is achieved by properly balancing the artificial-viscosity term with the inviscid flux ter
Without preconditioning, standard upwind and other schemes have an amount of arti
viscosity that does not scale correctly fdr— 0, and the accuracy deteriorates.

(4) Decoupling of Euler equation§.he Van Leer-Lee—Roe, Turkel, and other pre
conditionings have the property of being able to decouple the entropy advection equi
from the Euler equations. Moreover the Van Leer preconditioner allows perfect decour
of the system of 2D Euler equations into an acoustic and an advective part (both entt
and entropy modes): in 2D the acoustic system only involves derivativeaoflv. Such
decoupling allows the development of genuinely multidimensional discretizations [18,
19, 20, 6, 5, 23, 24], as demonstrated by Roe (University of Michigan) and Deconinck (
Karman Institute, Belgium) and their students.

1 The modification was found to be needed in the first place to lift an unusually severe restriction on the time
[14, 31].
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4. DESIGN CRITERIA OF EULER PRECONDITIONING

As explained in the previous section, preconditioning provides many important adv:
tages on both p.d.e. and the numerical scheme level. However, adopting an artificial t
nique in a numerical scheme may also produce unnecessary extra drawbacks. To mai
the advantages and to minimize the artificial disadvantages, it is important to constru
proper analytic preconditioner because the above characteristics are strongly related t
form of the preconditioner. Therefore, a list of design criteria for proper preconditioning
documented below to retain the above benefits and to remove the causes of instabilitie:
to preconditioning. Some of these design criteria must be definitely satisfied; others sin
lead to an improved preconditioning performance.

(1) Positivity. The preconditioning matrix must be positive-definite, in order to agre
with the boundary conditions that define the steady state. This criterion is fundamental,
does not restrict the choice of preconditioners very much. Moreover, a small violation
pears to be allowed. For example, the unmodified stagnation preconditioner to be discu
is slightly non-positive but has been successful in computing stagnation flow.

(2) Symmetrizabilitylt is well known that a stable hyperbolic system of equation:
must possess a similarity transformation to a symmetric system [11]. Hyperbolic syste
of conservation laws, such as the Euler equations and the equations of ideal magnetoh
dynamics, have this property; it also implies the existence of an extra entropy-conserva
law [11, 12]. While the Van Leer—Lee—Roe preconditioner is already symmetric for t
usual symmetrizing variables, other preconditioners such as Turkel's and D. Lee’s stag
tion preconditioner lie at the limit of system symmetrizability and need a slight modificatic
to satisfy the symmetrizability condition. The symmetrizability is fundamental, althouc
it, too, appears to tolerate small violations, and leaves much freedom of choice.

(3) Reduction of spread among eigenvalugeducing the spread among the eigen-
values of the Euler equations is the prime design criterion in developing preconditions
Optimizing the condition number greatly reduces the choice of preconditioners, but ¢
leaves enough parameters to achieve other goals. By allowing a slightly suboptimal co
tion number, the freedom may be usefully enlarged.

(4) Decoupling into convective and acoustic equatiorise ability of the precondi-
tioner to decouple the convective from the acoustic equations enables the implementatic
genuinely multidimensional discretizations [18, 17], and the use of different, best suita
relaxation methods for the different types of equations [25]. There are different levels
decoupling that may be pursued. If we insist on keeping only derivatives of pressure
flow angles in the acoustic subsystem, the criterion is very restrictive: only the Van Le
Lee—Roe preconditioner and a suboptimal variant of it [32] can achieve this. On the ot
hand, decoupling of the entropy equation only is a much less restrictive and still use
condition. More restrictive is the condition that one of the convected quantities must be
total enthalpy By this criterion half of all optimal preconditioners must be discarded; thes
are the transpose of the admissible ones. In general, if attention is given to the criterion
reduction of eigenvalue speed, and (5), sparseness, the acoustic/convective decouplin
appear as a by-product.

(5) Sparseness of precondition&his criterion is related to the decoupling criterion.
When trying to satisfy the various other criteria, we should look for the sparsest po:s
ble preconditioning matrix (using the symmetrizing variables) so as to avoid unneces:s
coupling of the equations.
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(6) Clustering of numerical eigenvalues for all Mven when a preconditioner achi-
eves the eigenvalue optimization on the p.d.e. level, the discretized preconditioned ¢
tions may fail to produce the expected eigenvalue clustering. Consideration of the Fo
footprint can, for instance, filter out incorrectly generalized preconditioners, previol
known only for a small Mach number; this criterion is not very restrictive.

(7) Proper balance between artificial dissipation and inviscid flux derivatives f
M — 0. To preserve the accuracy of solutions in the incompressible limit, the artifici
viscosity and advection terms must scale similarly vithThis condition is not too restric-
tive; the explicit form of a preconditioner meeting this condition is known. The only wide
used preconditioning known to violate this condition is Jacobi preconditioning, which &
does not improve the condition number either.

(8) Insensitivity to flow angle for M> 0. Preconditioners with a strong flow-angle
dependence may fail to produce converged solutions, especially if stagnation region
present. Insensitivity to the flow angle is desirable for stability and convergence. T
condition is not too restrictive, as it seems to be important onliyjer 0.

(9) Non-parallel eigenvector structure, especially for-M0 and 1. Loss of orthog-
onality among eigenvectors can cause a transient amplification of error components,
sibly leading to instability. Most preconditioners produce pairs of parallel eigenvector:
the Mach number approaches zero, but there appears to be a special class of optim:
conditioners, including D. Lee’s stagnation preconditioner, that maintains a more ne
orthogonal eigenvector structure. Eigenvector degeneration may also obtus ator any
other Mach number. This condition is quite restrictive, and one of the major concern
current research.

(10) Minimal artificial-vorticity production near a stagnation pointo prevent nu-
merical instability near a stagnation point, numerical vorticity production must be reduc
This condition is not so restrictive; an explicit recipe to prevent artificial vorticity producti
perfectly is developed by Roe [13].

(11) Continuity at M= 1. For a consistent preconditioning effect in the transon
regime, the subsonic and supersonic branches of the preconditioner must have a si
connection, in some sense, at the sonic point, even though the matrix itself may be sing
This condition is strongly discriminating, and a valuable selection criterion.

5. ROBUSTNESS ISSUES

Though local preconditioning provides benefits such as convergence speed-up ar
curacy improvement at low Mach number, these come at the expense of robustness
section focuses on a more detailed issue: reliability of preconditioner around flow singt
ities such as stagnation points. The analysis for a general Euler preconditioner family
the overall design criteria will be discussed from 1D to 2D in the following Section 6.

One serious problem associated with the use of local preconditioning, even if it doe:
rightthing in the limit of incompressibility, is that it commonly breaks ddecally when the
Mach number vanishes, i.e., in a stagnation point. Itis evident that, for a preconditioner
called reliable, it must achieve stability for stagnation flow, since most practical numer
problems have one or more local stagnation regions. In this section, we describe res
on the loss of stability in computing stagnating flow with the symmetric Van Leer—Lee—F
preconditioning [31], caused by flow-angle sensitivity, and how this sensitivity was redu
in two totally different ways: (a) by modifying the matrix (Subsection 5.2); (b) by developi
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a completely new matrix with superior properties for low Mach numbers (Subsection 5.
In particular, the second method (b) produces the so-called “stagnation preconditior
which was a basis for the low-speed regime in constructing optimal preconditioners for
Mach numbers in Section 6.

5.1. Instability in a Stagnation Region
There are four reasons for the instability in a stagnation region.

(1) Unstable local time steplhe first one is related to the small magnitude of the
Mach number. As the Mach number decreases in a stagnation region, the allowable |
time step for the preconditioned equations increaseg ks tarying strongly from cell to
cell. It is easy to devise the preconditioned scheme unstable by local time-stepping;
type of instability can be prevented by putting a safety factor or a cap on the time step.

(2) Degeneration of eigenvectorsurthermore, the small Mach number reduces th
orthogonality between eigenvectors of the preconditioned matrix coefficients, increas
the chance of transient growth, since the eigenvector basis is not effectively spanning
space. This will happen for any value of the time step, and can be aggravated by I
velocity and/or pressure perturbations arising in the stagnation region. This happens
instance when the calculation of flow over an airfoil is started “impulsively,” i.e., with free
stream velocity everywhere. The perturbations near the stagnation point then are of the
PooUZ, ~ PosM2,, which is particularly large iM,, is not small [4].

(3) Flow angle sensitivityThe third reason comes from the fact that the flow angle
varies substantially around the stagnation point, and the preconditioned equations ma
over-sensitive to this variation.

(4) Vorticity production.In unpreconditioned Euler equations, vorticity is merely
transported with the flow speed; the vorticity is produced only due to interference of
wall boundary or a shock. However, preconditioned p.d.e.’s may have artificial vortic
production terms, of which effect is exaggerated around the stagnation point where velo
and pressure fields vary substantially.

5.2. Flow-Angle Sensitivity and How to Reduce It

To explain the part of the stagnation instability that is due to the preconditioner’s s
sitivity to flow angle, we analyze the behavior of the Van Leer—Lee—Roe preconditioni
matrix (11) for low Mach numbers. For subsonic flogr£ 7 = +/1 — M?2), the matrix is
expressed in generalized Cartesian coordinates as

'\"72 —% CoSs¢ —% sing 0
o —Mcosp (5+1)cosp+pBsig (5+1—p)singcosp 0
e Msing (3 +1—pB)singcosp (5 +1)si¢+pcosd 0 ’
0 0 0 1
(12)

whereg is the flow angle. Considering this matrix, the pattern of flow-angle dependen
among the matrix elements emerges as a possible source of trouble: the inner elen
(2, 2), (2, 3), (3, 2), and (3, 3), which depend ¢nremainO(1) for M | 0, while the
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FIG. 3. Flow angle variation across cells.

remaining elements a®(M, M?). This makes the preconditioning particularly sensitiv
to the flow angle when the Mach number approaches zero. In the case waede are
small in absolute value, numerical perturbations may not be small compared to the ve
of u andv, causing?(1) variations ing and, therefore, in the four matrix elements. This i
believed to be at least one of the causes of numerical instability near a stagnation poi
particular, when experienced witltanservativeipwind Euler scheme, associated with the
use of the above preconditioning matrix. The sensitivity can be eliminated when the a
dependence is completely removed from the matrix elements, or it can be much red
when only the quadratic terms in cpsand sinp are removed.

In a conservative upwind scheme, the flow angle sensitivity is emphasized in the pre
ditioned artificial-dissipation matrices [31], whose cell-face values become

P~LIPA|, P~PB|, (13)

rather thanA| and|B|, as in standard upwind schemes. In the update the spatial residu:
each cell is multiplied by the cell-centered valuePgf creating products

(Py)cented Py 1)face (14)

that may vary erratically near a stagnation point and deviate appreciably from the va
elsewhere in a smooth flow, which should be close to the identity matrix. If one sim
ignores these products, replacing then jihhe scheme becomes non-conservative and t
sensitivity tog reduces significantly. Figure 3 shows the sort of large flow-angle variatic
between the cell centers and interfaces that could cause the product (14) to differ appre«
from|.

To further investigate the stagnation instability, a numerical study was performec
illustrated in Fig. 4. Figure 4(a) shows velocity vectors in uniform slow fldiv=£ 0.1)
with an initial perturbation made by rotating the velocity over a certain angle in a sin
cell. Figure 4(b) is the uniform steady solution, obtainable without any preconditioni
or with a robust preconditioner. Note that the perturbation, although local, is not at
small, so linear stability theory does not offer any guarantee here. It turned out, for insta
that a 62 flow-angle rotation caused the solution to become unstable when advance
time by an explicit first-order upwind scheme preconditioned®hyr with CFL number
0.7; see Table Il. Using a smaller/larger CFL number will allow a larger/smaller ang
perturbation.



434 DOHYUNG LEE

Velocity Vector Plot Velocity Vector Plot
1 Initial value with 120° perturbation. 1.00 Converged Solution.
67 67+
v . . . e e e e v .- e 4 e e e e e
T 4 - 4 4 4 4 4 4~
334 334
-00 L] ] T 1 1 '00 1 1 L] T T
.00 .33 .67 1.00 .00 33 67 1.00
X X
(a) Initial perturbed values (b) Properly converged solution

FIG. 4. Angle-perturbation testyl =0.1.

The same scheme was also tested on a stagnation flow as shown in Fig. 5: the
is flowing from the top and bottom boundaries to the left and right boundaries. Withc
preconditioning the scheme reaches a reasonable-looking steady state (Fig. 5(a)). The
bility from preconditioning is readily identified in Fig. 5(b) and appears to be due to total
wrong flow angles.

The stagnation instability could be forestalled, but not avoided, even by taking sma
time steps. Similar behavior was found when simulating subsonic flow over an airfoil at
leading-edge stagnation point. Godfrey reports that implicit time integration can suppr
the instability if the grid used is not too fine [8].
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(a) Unpreconditioned. (b) Preconditioned (PvLRr).

FIG. 5. Instability of stagnating flowM = 0.1.
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In contrast, it was reported by Tai [32] that schemes preconditioned by Turkel’s prec
ditioning matrix (15), whether or not in conservation form, were less prone to the ar
instability. This, in fact, was our motivation to examine and compare preconditioning r
trices for arbitrary flow angle. The alleged greater robustness of Turkel’s preconditioner
be understood from its structure. The Turkel matrix in 2D becomes

MZ
i 0 0O
_M
Pr = B 100 s (15)
0 080
0 0 01
for low-speed flow along the-axis Turkel’s preconditioner reduces to
M2 0 0 O
-M 1 00
PP=l 0 010 (16)
0 0 01

Note that, unlike (12), this matrix has the propePys = P33, making the central block of
the matrix invariant under rotation. For an arbitrary flow angle it becomes

M?2 0 0O

Pry = —Mcosp 1 0 O ’ 17)
—Msing 0 1 O
0 0 0 1

which is well behaved foM — 0 since the flow-angle-dependent element<#1). The
angle-perturbation test (Table Il) shows tRatwill stand an angle perturbation up to 140
regardless of the CFL number, which is much larger than the valuBjgy. But it still
fails to calculate the stagnation flow of Fig. 5, indicating there is an additional caus
stagnation instability.

It is not a priori clear that, in the limit ofM — 0, the matrix (16) is the only optimal
preconditioner with the property that its (2, 2) and (3, 3) elements are equal. It woulc
preferable if an optimal matrix existed closer to Van Leer’s, i.e., more nearly symmetric
order to avoid losing symmetrizability; see Sections 6.1. Van k¢at. [32] searched for
reduced flow-angle sensitivity among all optimal 2D preconditioners of the form

a D EO
d b FO
P = 9 18
e f c O (18)
0 0 0 1
under the constraints = ¢, f = —F, and proved there are none. Apparently, the ext

freedom in the elements E, f, andF does not pay off. They therefore recommend t
those wishing to stay within the family of optimal preconditioners to switch smoothly frc



436 DOHYUNG LEE

Pt to Py r when varyingM from 0 to 1. This idea is similar to the switching presentec
in Subsections 6.1 and 6.2, where the functjohl) is chosen to vary fromg(0) = —1to
¢=1

The suboptimal symmetric preconditioner with the above idea becomes

: (19)

R O o o

wherea (M) is the switch needed to link the sub-optimal matrixvat= 0 to the optimal
form for M > 0. In the numerical experiments in [32],was chosen as a blending of the
form

1 1
=, 0<M< -, 20
@=3 =M =g (20)
3 1 1\? 1 2
2
a=1 égMgl, (22)

which is a continuously differentiable function using a cubic to switch between the tv
plateau values. Note that another simpler switch function can be used for the value of

From numerical experiments performed with this matrix by Mesaros [32, 17], a strikir
result was obtained. The symmetric preconditioner greatly improveshaconservative
flow code, namely, the unstructured-grid code developed by Mesaros on the basi
fluctuation-splitting ideas. Previously, the fluctuation-split scheme failed to converge
flows around airfoils at low inflow Mach numbers, due to the leading-edge stagnation
gion. The sub-optimal symmetric preconditioner decoupled the equations just as the orig
optimal Van Leer preconditioner, and made it possible to achieve accurate converged re
for arbitrarily low inflow Mach numbers on a fine grid. However, the conservative scher
still lost robustness for low-speed flows. Conservative solutions could be obtained only a
the non-conservative scheme had handled the first transients.

5.3. Complete Removal of Flow-Angle Dependence

As shown in the previous section, the Van Leer—Lee—Roe preconditioning technic
becomes unstable near a stagnation point. The instability was attributed in part to
incompatibility betweerPgenter and Py that appears in the artificial-viscosity flux. This
incompatibility increases as flow-angle variations increase when the Mach number loc
approaches zero as in a stagnation region. Therefore, one way to help prevent the insta
problem is to remove the incompatibility to the extent possible.

A useful requirement to impose étis that the product of itself and its inverse, evaluatec
atdifferent neighboring locations, be close to the identity matrix. In the stagnation region,
flow-angle is changing rapidly; therefore, we must concentrate on reducing the flow-an
dependence iR.
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A stagnation preconditionas hereby defined as a matrix that, without having any flow
angle dependence, generates the same optimal wave patterns as the Van Leer—Lee—F
Turkel preconditioners do. The general form of the subsstagnation preconditioning
matrix (bp = 0) becomes

M?2 +M+/1+ M2cosy +MV1+ M2Zsiny
Pstag= | TMV1+ M2cosy  siPy — M2cogy  —(1+ M?) siny cosy |,
FM1+ M2Zsiny  —(14+ M?)siny cosy  cofy — M2Zsiry
(23)

wherer is the hidden “principal angle” of the preconditioning matrix. Among the tw
choices of sign in the preconditioner, the one with the positive sign in element (1, 2) g
better convergence performance owing to a nearly orthogonal eigenvector structure, s
ically for low Mach numbers and for streamwise-moving plane waves. The other chc
produces an eigenvector structure with two identical acoustic eigenvectors for a certair
of streamwise moving plane waves at low Mach number, which slows down converge
and may cause an instability.

Note that any value ofr produces the same desirable optimal wave pattern. While tl
is true at the p.d.e.-level, or, equivalently, for low-frequency Fourier modes, the princi
angle clearly shows up in the high-frequency modes of a discretization. It turns out tha
best results, the principal angle must be set equal to the local flow angle, and this so-c
streamwise stagnation matrstill has the best performance in a stagnation region.

When ¢ is set equal to the local flow angle, and the latter is set to zero as usus
our analysis, the matrix becomes the following sparsest form of (24). Streamwise
stagnation matrixpresumably suitable for computing stagnating flow, is expressed as

M?2 Mv14+M?2 0 0O

~MVI+MZ (b —DHM? 0
Pstagstreamwise= ) (24)
0 0
0 0

whereby = 0 gives the optimal wave pattern for 8l < 1, butby > 1 is heeded for positive
definiteness oP and symmetrizability of the preconditioned equations. As discussed ¢
lier, a proper preconditioning has to satisfy other criteria such as positive definiteness
symmetrizability. With regard to positivitPsagstreamwiseyields

XTPx = M2x2 + (bg — HM?X3 + X3, (25)

and therefore is positive definite only whibgi> 1. The inequalityby > 1 also will satisfy
the symmetrizability condition. The consequence of a norzgsthat it makes the acoustic
wave front non-symmetric about the flow-normal axis, causing loss of optimality for lar
values ofM.

The eigenvector structure BiagsreamwiselS much more closely orthogonal than that o
Pv.r. Recall that, folPy_r, the enthalpy-convection eigenvector eventually collapses or
an acoustic eigenvector at very low Mach number. In contRaghsireamwised0€S not cause
extreme departure from orthogonality.
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With Psiagstreamwise the right eigenvectors for the waves traveling in the streamwise d
rection become

1 1 0
—M — M5/12 0 0
Ru= 0 “lo|w Re=|1]
0 0 0
M 0 0
—1-M3/2—-M*/8 -1 0
Rs = 0 *~l o |t Re=|o| (26)
0 0 1

as the Mach number approaches zero. Rhaepresent eigenvectors, corresponding tc
forward and backward acoustics, enthalpy and entropy waves, in sequence.

Just as its simplified form studied in Subsections 6.1 and 6.2, this preconditioner
serves eigenvector orthogonality for waves moving in the streamwise direction, in
incompressible limit. A similar study for the eigenvectors of waves moving in the normal
the flow direction shows that the eigenvectors can be kept from moving too far away fr
orthogonality: the eigenvectors do not make angld$° (or >135) with each other.

When performing a Fourier analysis of a difference scheme, properties at the p.d.e. |
show up as properties of low-frequency modes. Wave-speed equalization and flow-a
insensitivity, such as obtained for the stagnation preconditioner, will thus be found
low-frequency modes. The behavior of high-frequency modes, which do not follow t
p.d.e. accurately, may be totally different and, in fact, undesirable. To check the numer
propagation and damping produced by the first-order upwind spatial operator for all wa
from low to high frequencies, a Fourier footprint (FFP) is producedfgg Figure 6 shows
the FFPs resulting when varying the difference between the preconditioner’s principal ar
and the actual flow angle. When the angle difference is zero, the shape of the FFP is the :
as that of the original Van Leer preconditioning. However, as the angle difference increa
the shape of the FFP changes to a less orderly pattern in which some high freque
eigenvalues cross the real axis, i.e., change sign in their imaginary part value. This m¢
that high-frequency waves may propagate in a direction opposite to that of low-frequel
waves, especially as the angle difference approacltfes 90

If the principal angle is set to a certain fixed global angle and the angle difference with
flow direction is too different, the high-frequency eigenvalues still may cause an instabil
in spite of the insensitivity of the low-frequency eigenvalues to the angle difference. The
fore, preconditioning regardless of the flow angle remains a fiction. HowRy&Jstreamwise
(v = ¢) does a good job in stabilizing against the angle instability.

6. EULER PRECONDITIONER FAMILY

The design criteria in Section 4 cannot be satisfied by the same preconditioner, espec
in multidimensions; i.e., there is no preconditioner that meets all the above conditions.
instance, reducing the sensitivity to the flow angle in the symmetric Van Leer—Lee—F
preconditioner leads to either a loss of optimality [32] or loss of symmetrizability. Table
shows how the currently popular preconditioners score in each criteria; as can be seen,
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FIG. 6. Fourier Footprint for the first-order upwind spatial operator with stagnation preconditioner. The ar
¥ — ¢ is the angle difference between the preconditioner’s principal angle and the actual flowMngl6.1.

is no preconditioner that meets all criteria. Therefore, a particular philosophy and ove
understanding of each feature need to be discussed regarding the use of these criteri

Among the criteria, positivity (1) and symmetrizability (2) must surely be satisfied
secure basic well-posedness and stability of the equation system; this is usually vel
after the choice of preconditioners has been substantially narrowed down. Eigenvalue
mization (3), while keeping the matrix sparse (5), is the single most important criterion
reducing the vast number of possibilities to an manageable subset. At this point, decou
(4) will have been achieved to some degree. One must keep in mind that the degree of ¢
value optimization can be reduced as a sacrifice to the other criteria to be satisfied. |
special conditions a1 = 0 andM = 1 need to be considered. Among all sparse optim
(or somewhat suboptimal) preconditioners we may select those that have good properti
M — 0, as formulated in criteria 6 (accuracy), 8 (flow-angle insensitivity), 9 (non-paral
eigenvectors), and 10 (minimal vorticity). When extending such preconditioners to hig
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TABLE |
Comparison of Preconditioners

Van Leer Turkel Stagnation Block-Jacobi
Removes stiffness caused Yes Yes Yes No
by spread in wave speeds
Concentrates high- Yes Yes Yes Yes
frequency eigenvalues
Preserves accuracy in Yes Yes Yes No
incompressilbe limit
Decouples acoustic from Yes Not Not No
advective equations perfectly prefectly
Eigenvectors well-behaved No No Yes Yes

in a stagnation point

Mach numbers, we must try to observe conditions 6 (numerical eigenvalue clustering).
(continuity atM = 1), and, again, 9 (non-parallel eigenvectors).

For construction of new preconditioners by the previous criteria, we start with explori
preconditioning matrices for the 1D Euler equations. Many of the relevant properties of
and 3D preconditioners are already found in their 1D counterpart, while application of
design criteria is greatly simplified. This produces some guiding principles for selecting
and, ultimately, 3D preconditioners. We also extend the 1D preconditioners to 2D, optin
ing design criteria to some extent, excluding some design criteria such as minimizatiol
artificial vorticity production.

6.1. One-Dimensional Preconditioning Family

For the one-dimensional Euler equations,

au au
S0 =AU =ResU), (27)

perfect preconditioning is possible, i.e., the characteristic condition number can be brot
down to unity. This is achieved, for instance, by multiplying the residual with the Matrix

Py =qlAI™, (28)

whereq is the flow speed. With the system of symmetrizing variables (2) the detailed mat
becomes

M(M-+1+|M—1)) _ M(M+1-|M-1) 0
2M2—1] 2IM2—1]
_ M(M+1-|M—-1)) M(M+1+|M-1)
Pi=| - 2IM2—1] 2IM2—1] of. (29)
0 0 1

2 This matrix is essentially the diagonal block arising in a Newton solver based on the first-order upwind spe
Euler discretization. This is the only block remaining in point/Jacobi relaxation, therefore, | shall refer to the 1
of (28) as Jacobi preconditioning.
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or
M M2
-M2? —w O
PJ—sub = - 1M,\2/|2 17MM2 o], M < 1; (30)
0 0 1
M2 M
w-1 w1 O
P3_super= Psuper= —% M“ﬁ'—fl o1, M > 1 (31)
0 0 1
This yields the preconditioned system of equations
U 4, 0U
op = AAITAL (32)

its characteristic speeds are the eigenvalueg|/Af~'A and all equal the flow speed in
absolute value. This preconditioning is unique for supersonicltawsubsonic flow there
is substantial freedom in choosing a matrix that will achieve perfect preconditioning in
sense of eigenvalue optimization [14]. From (29), (30), (31) it is seerPthetnot defined
for M = 1. It appears that in the preconditioned pressure and velocity equations the res
is artificially blown up by a factor 2|1 — M?|, in order to compensate for the vanishing
characteristic speed — as. With regard to a numerical update we might interpret this
using a time step for these equations that is inversely proportiomal-avi?|. In practice
this time step must be limited in order to avoid nonlinear instabilities. Note that, when
factor 1/|1 — M?| is taken out, the preconditioner is continuousvii= 1. Note further
that the entropy equation does not receive this large time step. The use of differfamt
different waves, possible through matrix preconditioning, has been called “character
time-stepping” [31], in contrast to just “local time-stepping.”

If we allow asymmetry for an arbitrary subsonic optimal preconditioner we can finc
two-parameter family of matrices producing optimal eigenvalues,

a c¢c o0
P=(d b 0]. (33)
0 0 1

When doing the eigenvalue optimization it turns out that only the procddchot c or d
separately, appears in the constraints on the eigenvalues. This means that the transy
any optimal preconditioner of the form (33) is also optimal. This, by the way, is not just t
for one-dimensional asymmetric preconditioners but holds for any number of dimensi
The proof is trivial; it follows after taking the transpose of the matrix whose eigenvalt
are sought.

% In the supersonic casBA has three identical eigenvalues{), and for the orthogonal eigenvector structure it
must be a multiple of the identity matrix. HenBe= gA~! = g|A|~%. In earlier studies, we found the Jordan
block form can also keep the same eigenvalues of the system with more degrees of freedom. However, a 1
and simple form of the matrix can be obtained even for the additional requirement, orthogonality of the sys
Therefore, in order to avoid confusion and unnecessary analysis in obtaining the optimal supersonic precondi
we decide to call the supersonic matrix unique.
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We shall now try to satisfy the design criteria of Section 4 with the general form (3:
suppressing the entropy entry. Most design criteria are relevant even in 1D, except tt
regarding the vorticity and flow angle, while clustering of numerical eigenvalues becon
trivial in 1D. Decoupling is also trivial, but, at the same time, has an interesting twist; tt
will be explained at the end of this section.

Satisfying only accuracy, continuity, and optimization of eigenvalues among design «
teria, we can propose two families of preconditioners:

4
P, = < -M M ) (34)
- M q_ &
1-M2 I-M?
and
M_zz M
Py = ( s . ) : (35)
17M28 1- 1—Mm?

This c— family of preconditioners can be divided into a 1D version of popular multi
dimensional preconditioners such as symmetric Van Leer-Lee-Ree-(1), triangular
Turkel (¢ =0), and antisymmetric stagnation preconditioners-(1). The symmetric Van
Leer-Lee—Roe preconditioner produces eigenvectors which become parallel as the N
number approaches zero, but & 4fhgle is maintained as the Mach number approache
one. Next, Turkel's preconditioner causes the eigenvectors to degenerate fvt ddtand
M =1. Finally, in D. Lee’s stagnation preconditioner, the eigenvectors do not degenet
asM approaches zero,

M2 M
_mz —M2 1 —M
Pc,st: < ! ':\AAZ ! ,'\\/l/lz2 ) , Rc,st= (—M 1 ) (36)

T1-mM2 T 1-Mm2

ForM 1 1, however, the eigenvectors®f /A become parallel; als®, s: does not connect
smoothly toPgperat M = 1. For the moment we shall simply label this member of¢he
family as “stagnation preconditioner,” although Lee’s stagnation preconditioner, as defil
in Subsection 5.3, has a more complicated dependen&é.on

Interestingly enough, the transpose of these preconditioners, i.e- faenily, not only
produces simpler preconditioned equations, as seen in (37), but also a better eigenv
structure. In particular, the transpose of the stagnation preconditione with, yields a
diagonalmatrix Py s:A, with perfectly orthogonal eigenvectors at any Mach numbers:

-M 0 0 1
Pd,stA = ag ( 0 M > 5 Rd,st = <l 0> . (37)
The transpose of Turkel's preconditioner has the eigenvector structure
0 -2M
rer= (5 3. (38)

which still degenerates ad | 0, but not agv 1 1.

Among the above— andd- families of preconditioners, a preconditioner with propel
¢ ands functions can be formulated in order to satisfy all 1D design criteria. This ne
preconditioner will be evaluated with regard to each design condition.
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(1) Accuracy and continuity.he artificial viscosity analysis of Turket al.[30] shows
that element must be®(M?) to preserve the accuracy for very low Mach numbers. No
that this condition is not met in the preconditio®y_g,p, in Eq. (30), since its element
a for subsonic flow equal#/(1 — M?). However,c— andd— families reduce down to
M?/(1— M?), ensuring accuracy preservation in the incompressible limit. These also y
the proper transition a1 = 1 to the unique supersonic vali?/(M? — 1); see Eq. (31).

(2) Optimizing eigenvalue3he optimal eigenvalue restriction requires that the eige
valuesi,, A, of PA must have opposite signs with the same quantity,igx,= £M for
M < 1. The above— andd- families of preconditioners have these optimized eigenvalue

(3) Positivity and symmetrizabilitiNext we consider positivity o and symmetriz-
ability of the preconditioned system.

DEFINITION 1. A matrix M is called positive definite if and only ¥ Mx > 0 for all
nonzerox; if M is positive definite, so i1 7.
Considering first the—family, with regard to positivity oP,

2 2
<M2xf+§;1x2) +{1—M2— (C—erl> }XZZ]; (39)

1

X-PX =
¢ 1— M2

this is positive forX # 0 if
—1-2/1-M2<¢<-1+2V1-M2 (40)

Figure 7 shows that the positivity can be preserved only if the preconditioner rem
inside of this elliptic domain. The stagnation preconditioner and its transpose matrix fa
preserve the positivity for aM < 1, while Turkel’'s are non-positive fdvl > v/3/2; only
PyLr is positive-definite at alM < 1.

DEFINITION 2. If the equations can be put into the form
Qd Vv + A*dyv + B*oyv + C*9,v = 0, (41)

whereQ, A*, B*, C* are all symmetric, an@ is positive definite, then the system is callec
symmetrizable, and it can be shown that the solution is stable in the (vV0iQv).

The limits of the symmetrizability interval are always positive, except one choice
¢(M):

¢(M) = —M2, (42)

For this choice ot (M) the symmetrizability is lost by a non-positive defini@e

(4) Orthogonalizing eigenvectorés has been shown already, the stagnation precc
ditioner has orthogonal eigenvector structure when Mach number approaches zero ar
Van Leer—Lee—Roe preconditioner has an orthogonal system at sonic point; the sma
cles in Fig. 7 indicate the points of orthogonalizingalues. To orthogonalize eigenvectors
for all Mach numbers, the inner product of preconditioned Jacobian eigenvectors nee
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FIG.7. Members of the—family of preconditioners. Positivity is preserved only inside of this elliptic domain.

vanish? This can be achieved for alll by taking

4M?2

=1-— .
¢ 14 M2

(43)
This function connects the above orthogonalizing limit points through the positivity doma
Figure 7 shows the graph of tligM) function in the positivity domain, and some other
choices of¢, including the form (43) which orthogonalizes the eigenvectorBAf The
graph of the latter is tangent to the graph of (42), so the orthogonality choice preser
symmetrizability.

The d—family, attractive because of its algebraic simplicity, does not have such an o
standing member. There is one choice for which the orthogonal eigenvector structur
preserved, namelg,(M) =1 (transpose of the stagnation preconditioner), but this matri
is not positive definite and does not connect smoothly to the supersonic branch (see Fi

The characteristic equations for the resultmgamily preconditioned system can be
written as

VP +uv =0 (44)

V@ —uv®@ =0, (45)

4 The alternate method is to force the resulting matrix to be symmetricRbes (PA)").
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FIG.8. Members of thel—family of preconditioners. Positivity is preserved only inside of this elliptic domair

where
w_ 9P
v = & 4 ugu (46)
0
) 2_ 0P
V@ = 1-2M2— )22 L u + Dou. (47)
o

The first characteristic equation of the forward moving wave describes convection of t
enthalpy in isentropic flow. As seen from the equatipns dropped out, indicating that
the total enthaply is still preserved even after preconditioning. However, this total enth:
convection is not valid for thel— family of the preconditioner. It is also seen that the
invariant value 1 in element (2, 2) of the optimal preconditioner becomes the scale fe
of the enthalpy-wave speed, and this remains true in 2D and 3D. In 1D the enthalpy v
replaces the forward acoustic wave of the original system; in 2D and 3D, however, it repl
a shear wave or, more precisely, the convection of the normal component of velocity.

The following analysis shows how the preconditioned equations are affected by the ei
vector angle. In the case of parallel eigenvectors, the same flow quantity (Riemann invar
has to propagate at two different characteristic speeds, which produces the ill-conditit
unstable system. In contrast, with an orthogonal eigenvector structure independent qt
ties propagate with different velocity. This is illustrated below in a few examples.

By takingz = —1 (VLR), the second invarianty® = %” approaches the other invariant
(enthalpy) forM | 0, but it remains distinct (although not completely independerit) 4sl.
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For ¢ =0 (Turkel) it approaches the other invariant fdr=0 as well asM =1. For¢ =1
(D. Lee, stagnation), it approaches the otheMoe 1, but forM = 0 it becomes completely
independent.

Forc=1-— %Mzz, the top choice, we find

3
av@=mP _ asiu, (48)
ol

which again remains distinct fros/® for anyM; inthe (% , du) plane, these two invariants
form orthogonal vectors. This choice produces a well-balanced preconditioned system

<ﬁ+Mut)+u<&+Mux> =0 (49)
s pas

<M£—ut)—u(M&—ux>:0. (50)
pas pas

It resembles the original characteristic equations, preserving its orthogonal character
the benefit of equal absolute characteristic speeddVlAt 1 the characteristic variables
become equal to the original Riemann invariants; this remains shiferl when using
Psuper = GA~L. This is as close to the original physics as one can ever get after precor
tioning.

6.2. Two-Dimensional Preconditioner Family

When charting the huge family of 2D Euler preconditioners, our thorough knowledge
the 1D family offers very helpful guidance. It turns out that the useful part of the 2D fami
is not so large, after all, with only one obvious extra parameter, and satisfying all the crite
of Section 4 becomes impossible. Waves may now propagate in any direction, with s
and the associated eigenvector depending on the propagatiorvamyladdition there is
a structure of 3 rather than 2 eigenvectors to be kept from degenerating. In this sectior
shall do an initial search for and evaluation of 2D preconditioners; the further subsecti
of this section deal with meeting specific design criteria. Particular attention will be given
optimization of eigenvalues for cells with an aspect radi® # 1, reducing the sensitivity
of the preconditioner to the flow angle, especially near a stagnation point (Subsection -
and to preventing eigenvector degeneration in the preconditioned system.

The 2D version of the Van Leer-Lee—Roe preconditioner (11) produces an unste
version of the characteristic equations of steady supersonic flow [17],

(0 + Pasds — asdn) (ap - %qav> —0, (51)
Hi +qHs =0,
§+9$ =0,

whereH andS are total enthalpy and entropy, respectively.

5 This matrix is not the only 2D supersonic preconditioner that can produce the ideal condition rimstier
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In addition to enthalpy and entropy convected in the flow direction at the flow speet
the two steady-flow Riemann invariants are convected along the Mactf laiss,at the
flow speed. Thus, the condition number equals 1 fovat 1.

Using the sparseness patteriPgfye, We restrict our research for subsonic preconditior
ers to matrices of the form

PSub = ) (52)

oo Qw
O oOooT o
o ® O O
= O OO

with only one additional parameteycompared to the 1D case. Since the entropy equati
is unaffected, we shall drop the entropy entries in what follows.

In comparison to the 1D case there is a fundamental difference. In 1D the forw
acoustic wave becomes the enthalpy wave; in 2D the enthalpy wave is still present
in each propagation direction a distinct forward quasi-acoustic wave can be identifiec
speed is ruled by the value of element

(1) Optimizing eigenvalues and accuraBy the study of wave propagation analysis
we can propose a one-parameter family of matrices which produce optimal wave pat
[13]; with c = M¢(M)/+/1 — M2 it takes the form

M2 M
W
— | _M _ ¢
P= Mo1-£ 0], (53)
0 0o B

whereg = +/1 — M2 for subsonic flow. Again, the Van Leer-Lee—Roe and Turkel matric
are obtained fot = —1 and 0, respectively. A variant of the 2D stagnation preconditions
which will be derived in the next section, can be obtained by seffirgl. Accuracy
preservation for the low Mach number can be met by setting eleaéxitvi?).

(2) Positivity. Positivity of P for the above choice af(M) is easily established. The
positivity analysis for the 2[—family is very similar to the 1D analysis in Subsection 6.1
The essential change is that the denominaterM? or g2, found in the elements ¥, is
replaced byv/1 — M2, or 8. The third componentxs, of the test vectok arising in the
2D analysis, does not affect positivity for their family of preconditioners. Therefore, 1
positivity we require

—1-2/B<¢<-1+2\8. (54)

When comparing this to the 1D variant, Eq. (40), we see that, owing to the replacen
of B by /B, the allowed range for (M) is a little wider in the 2D case. The conclusions
about the positivity of the various known preconditioners are not chariged: violates
positivity for all M, ¢ =0 violates positivity for the larger values & (in this case, for
M > %5), and¢ = —1 and the function (56) both lie in the positivity range for lsll

5 The Mach lines are steady wave patterns at angjeswhereu = arcsinl/M) = arctar{l/+~/M2 — 1) is the
Mach angle.
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(3) Orthogonalizing eigenvectorgor orthogonalizing preconditioned systems, we
need to study the eigenvectors of matrix coefficients along and normal to the streamy
directions. The right eigenvectors associated with enthalpy and two acoustic waves|(
A23 = £0B for PAandi; = 0, A3 = £q for PB), respectively, are

M@1+¢) 0 —M 0O M —M
Rea=|pg-M2—-¢ 0 1 |, Reg=[(1 -1 1 ]. (55)
0 1 0 0 B B

As can be seen from the previous eigenvector sysRBdoes not have any dependence
on the variation of and two acoustic eigenvectors become parallel as the Mach numlt
approaches 1. However, this parallelity of eigenvectors at the sonic point is not mu
of a problem because numerical practice shows the numerical instabilities with the
of preconditioning usually occurs around the stagnation point. At a stagnation pBint,
maintains 45 between eigenvectors, which is an acceptable eigenvector structure. -
system still degenerates as a whole since no eigenvector spans the first row, butitis con
to only normal to the flow directiorf(= 0). However, it appears to be enough to establisl
eigenvector orthogonality only wheéh= 0, i.e.,PA, for all Mach numbers.

Orthogonality of the first and third eigenvector$#f occurs for a value af (M) different
from (43), because of the appearance/df— M2 instead of - M?2. The orthogonalizing
choice becomes

B —2M?

CW = e

(56)
This new preconditioner produces perfectly orthogonal eigenvectors for waves movingin
streamwise direction for all Mach numbers, as well as satisfaction of symmetrizability &
positivity conditions. In spite of the complicated form of (56), the numerical implementatic
of this matrix is quite simple because any matrix of the form (53) produces simply structu
artificial-viscosity matrices, which does not depend on the specific choicelbis noted
that the construction of artificial-viscosity matrices becomes complicated by the methoc
limiting the value ofM in the preconditioner to prevent parallel eigenvectors, suggested
Darmofal and Schmid [4].

The above analysis gives priority to a certain choice of design criteria, which, to sol
extent, is a matter of taste, and clearly could vary with the intended application. When ot
sets of criteria are emphasized, different matrices will result, since no matrix can satisfy
criteria.

7. NUMERICAL STUDIES

For the validation of the stagnation preconditioner and comparsion on performance
other Van Leer and Turkel preconditioners and those variants, three numerical tests \
performed. In those cases, the stagnation preconditioner improved stability as well as
vergence in stagnation regions.

The first numerical test is the calculation of the evolution of a one-point flow-ang
disturbance in a square domain, as in Subsection 5.2. (This model problem tests how
flow-angle differences between the cells can be damped out. Figure 4 shows the in
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TABLE Il
Maximum Bearable Initial Perturbation Angle

CFL UnPC Van Leer Van Leer-sub Turkel Stagnation
0.5 180 129 137 149 161
0.7 180 61 133 149 155
0.8 180 50 94 149 117

Note. CFL=CFL number; Un PG=no preconditioning; Van LeetVan Leer-Lee—Roe preconditioner;
Van Leer-sub=suboptimal variant of Van Leer-Lee—Roe preconditioner; Tusk®lirkel preconditioner;
Stagnation= stagnation preconditioner with the principal angle of local flow anigle; 0.1, 10x 10 grid.

conditions and the resulting converged (uniform) solution. Table Il shows the maxim
perturbation angles allowed by each of the preconditioners as a function of the CFL nur
used. In case the streamwise stagnation preconditioner is used, the angle sensitivity aj
to be reduced in comparison with the Van Leer preconditioner and also (for the smaller
numbers) the Turkel preconditioner.

The second test is the calculation of stagnation flow. As shown earlier in Fig. 5, the
Leer—Lee—Roe preconditioner (without “fix”) is not able to calculate stagnation flow &
neither is Turkel's preconditioner. Note that the original form of Turkel's precondition
is tested, meaning it does not contain a low Mach number cutoff on its element. Howe
as shown by Fig. 9, the stagnation preconditioner is able to compute this flow success
in the half-plane domain. If the stagnation preconditioner is used lgita O in a full-
plane calculation, it produces a large amount of artificial vorticity near the stagnation pc
In consequence, the velocity vectors at the stagnation point are rotated counterclock
eventually leading to slow divergence.

The preconditioned vorticity equation shows that there is too much vorticity product
by the combined velocity and pressure fields, and that the vorticity-convection term is

Velocity Vector Plot Velocity Vector Plot
1.00 Stagnation PC(Half Plane(21,11), M=0.1) 30 Stagnation PC(Half Plane(21,11), M=0.1)
' A R AR R R R R RN '
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Yorvvy i iiivinasas 1/ 1 VNN
TR RN
P 2 2 A A N B S NENENENENENENENE < / / \ \ N
33t s s s /s VN N N N NN N 104
y [ZZC2C2C000 il Y - , \ ~ o~
NNt - N \ , P .
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—B3FNNNNNNNNN N s —.104
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NN U N U UL N U B B Y Y S A P g N A \ f / 7
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-1.00 T T T T T —-.30 T T T T T
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(a) Full Domain (b) Zoom-in Domain

FIG. 9. Flow field of half-plane stagnation flow, computed with the “streamwise stagnation precondition
The upper plane is fdy, = 0; the lower plane fob, = 1.5.
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Convergence Rate(Half Plane(21,11), M=0.1)
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FIG. 10. Residual history for half-plane stagnation flow calculation. UaP@preconditioned; SPE
stagnation preconditioning; VLP€ Van Leer—Lee—Roe preconditioner (divergent calculation). Note: the Turke
preconditioner also fails to converge in this test.

well defined, as it is in the unpreconditioned and symmetrically preconditioned cases. '
analysis shows thdiy, needs to be 2?2 in order to maintain a well-defined vorticity-
convection term. However, choositig > 2/M? causes the loss of positivity and sym-
metrizability, and actually makes the system lose hyperbolicity. Instead, simply increas
bo to 1.5 reduces the vorticity production substantially.

In order to reduce the extent of vorticity production, the stagnation-flow calculatio
were performed in the half-plane, with an imaginary-wall boundary (flow symmetry) co
dition. With this set-up, the streamwise stagnation preconditioner succeeds in remo
the stagnation instability and speeding up the convergence without any problem. Figu
shows that the final converged solution does not have so much vorticity production,
Fig. 10 demonstrates the convergence acceleration. It is seen that the stagnation prec
tioner greatly improves the convergence speed, while the Van Leer—Lee—Roe and T
preconditioner blows-up due to the stagnation instability, and the unpreconditioned ¢
stalls due to the low Mach-number stiffness. It was observed that the increbgodt.5
gives slightly faster convergence than witgh= 0 since this reduces the vorticity production
and, in addition, ensures the positive-definiteness and symmetrizability of the system.
same two numerical tests with the new stagnation-friendly all-purpeseconditioner
(53), (56) shows that it is also robust with accelerated convergence slightly faster than
stagnation preconditioner.

As another more practical numerical test, the Van Leer, Turkel, and stagnation preco
tioners were used in computing steady two-dimensional flows about a NACA 0012 airft
showing how these behave in the low Mach-number limit. The computations were m:
with first-order upwind differencing on tw@®-grids, with 31x 16 and 61x 31 cells; the
grids are too coarse for good accuracy, but this brings out the differences in quality betw
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Convergence history
0 M=0.01, NACA0012, a =0

_____Stagnation

—4.04

Res

-8.04

—-12.0 T T T T T !
0. 667. 1333. 2000.
Iteration No.

FIG. 11. Residual history for low-speed flow around NACA 0012 airfdil;= 0.01, 31x 16 grid; pressure-
extrapolation wall-boundary procedure; UnR@npreconditioned; VI=Van Leer preconditioner; Turke}
Turkel preconditioner; Stagnatieastagnation preconditioner. Tije- preconditioner produces the same converg
ence history as the stagnation preconditioner.

the solutions. Furthermore, on coarse grids it is not necessary to use the stagnation:
“fix” of Darmofal and Schmidt [4] for the Van Leer and Turkel matrices. Time-marchir
was done by a single-stage scheme, so there is no strong high-frequency damping tc
the local preconditioning in the accelerating convergence. The CFL number for the |
time step was set to.D.

Figure 11 shows the residual history on thed16 grid for low-speed flowM,, = 0.01,
a=0°. It is seen that all these preconditioners successfully accelerate the converg
compared to the non-preconditioned scheme, with the stagnation preconditioner perfor
best, and Turkel's worst. Observe, however, the oscillatory residual convergence v
preconditioning is used. These oscillations are found to be generated at the leading
trailing edges, and most likely are due to vorticity generation during wave reflections.

Figures 12-15 show several converged solutions obtained without and with precc
tioning. The pressure boundary condition is used for better numerical solution at a-
boundary. As was discussed in Section 3, the unpreconditioned upwind scheme doe
preserve the accuracy in the low-speed limit. Figure 12 illustrates that, as the Mach nut
goes down to 0, the solution quality gets more degraded. In contrast, calculation witf
Van Leer-Lee—Roe and stagnation preconditioners produces reasonably accurate sol
even atM = 0.01, as can be seen in Figs. 13 and 15.

However, all those preconditioners without a low Mach-number cutoff on its element
to speed up the convergence with a more finer grid such as 821 This indicates that the
stagnation preconditioner age- preconditioner may improve stability to some extent, bt
those modifications and new development of a preconditioner on the matrix structure |
are still not enough to overcome completely so many instability causes in Subsection
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Mach Number Line Contours.
0 UnPC, NACAO0012, M = 0.01,a =0

13 Fmin .00877
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FIG. 12. Mach number contours for unpreconditioned steady solution with the pressure-extrapolation bou
ary condition; NACA 0012M = 0.01, 31x 16 grid.

8. CONCLUSIONS

The traditional goal for the Euler preconditioning has been to produce optimal wave fro
with the lowest possible condition number, because this minimization of the characteris
speed spread has a beneficial effect on the convergence acceleration. Further resear
shown that, in addition to the basic advantage of stiffness removal, the preconditior
can produce other major benefits such as system behavior like a scalar equation, acc
preservation in the incompressible limit, and decoupling of the Euler equations into ellif

Mach Number Line Contours.
NACA0012, M =0.01,a=0

1.50 Fmin .00556
Fst .00560
Finc .00020
7] Fmax .01094
.50
Y
—.50
—150 T T T T 1
—-1.00 .00 1.00 2.00

X

FIG.13. Mach number contours for preconditioned steady solution with the pressure-extrapolation bound:
condition; NACA 0012,M = 0.01, 31x 16 grid; Van Leer preconditioner. The same solution is obtained with
the stagnation ang- preconditioner.
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Mach Number Line Contours.
0 UnPC, NACA0012, M = 0.01,a = 0, (61,31)

1.5 Fmin .00620
Fst .00620
Finc .00020
. Fmax .01465
.50
Y
—.50+
_1’50 i ) ] ] T
—1.00 .00 1.00 2.00

X

FIG. 14. Mach number contours for unpreconditioned steady solution with pressure-extrapolation bounc
condition; NACA 0012M = 0.01, 61x 31 grid.

and hyperbolic parts. However, in spite of these benefits, the use of preconditioning |
now has been severely restricted, mainly because of the instability arising near a stagr
point. Analyzing the above benefits and problems in detail yields a list of design critc
for preconditioners: positivity, symmetrizability of the preconditioned system, reduct
of eigenvalue spread, decoupling within the system, sparseness, clustering of hum
eigenvalues, accuracy preservation inthe incompressible limit, flow-angle insensitivity, r
parallelism of eigenvectors, minimum vorticity production, and continuity at a sonic poi
We have discussed cause and effect at some length with regard to all these design cri

Mach Number Line Contours.
0 VLPC, NACA0012, M = 0.01,a = 0, (61,31)

Fmin .00336
Fst .00340
Finc .00020
T Fmax .01103
.50
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—.501
—1'50 L] S 1 1 1
~1.00 .00 1.00 2.00

X

FIG. 15. Mach number contours for preconditioned steady solution with pressure-extrapolation bound
condition; NACA 0012,M = 0.01, 61x 31 grid; Van Leer preconditioner. The same solution is obtained wit
the stagnation ang- preconditioner.
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Having clearly defined the above design criteria, it becomes possible to derive familie:
1D and 2D preconditioning matrices that meet most design criteria. In particular, the attel
to develop a new preconditioner by constructing an orthogonal eigenvector structure with
any “fix” or “limiter” in the entries for low Mach number is a fresh approach, becaus
the manipulation of eigenvectors in addition to eigenvalues has been regarded in a
limited way or considered nearly impossible. This construction of non-parallel eigenvect
was motivated by the success of the “stagnation preconditioner,” which was designe:
order to reduce the angle dependence in a preconditioner, but later was proven to pre
degeneration of eigenvectors in the low-speed limit.

The robustness problem related to stagnation instability involves a number of deta
issues, such as flow-angle sensitivity of the preconditioner, parallel eigenvectors, and ex
sive artificial vorticity production. To help cure the instability, special boundary procedur
were suggested; more importantly, the newly developed stagnation preconditioner has
parallel eigenvectors and a weak angle dependence for low Mach numbers, and serve:
model for constructing more robust preconditioned systems.

We have demonstrated that the stagnation preconditioner and a sub-optimal variat
the Van Leer-Lee—Roe preconditioner, the result of another attempt to improve robustn
can sustain a larger flow-angle difference between cells in the flow-angle perturbation 1
Furthermore, the stagnation preconditioner is the only one, among preconditioners te:
that can converge to the steady solution of the low-speed stagnating-flow test probl
Some calculations of inviscid flow around airfoils on coarse grids are presented, show
among other things, that the stagnation and Van Leer preconditioners are comparab
their ability to accelerate convergence and preserve accuracy in the incompressible lin

In some practical tests with much finer grids, the stagnatiorg aqmteconditioners, with-
out the use of a cutoff for the preconditioner element, still fall short in producing complete
stable solutions. This implies that the stagnation angbreconditioners need a combina-
tion of other numerical techniques such as cutoff and modification of the artificial-viscos
treatment for more practical usage. However, more importantly, these new preconditior
provide much improvement with regard to many design criteria, as has been showr
analysis as well as some numerical tests.

APPENDIX 1: EQUATION FOR THE WAVE-FRONT ENVELOPE

In Fig. 16,L; andL, are two wave-front lines coresponding to wave-spegdsnd A,
and wave-angleg; ando,.
Their intersection pointX, Y) can be obtained by solving the two equations

Y — A1 Siné 1

1 1 — _ ’ (57)
X — A1 €086, tano,
Y — Ay siné 1

2 2 _ (58)

X — Apc080,  tandy’

where Eq. (57) represents the points of lineand Eq. (58) represents the points of ling
To solve for the wave-front envelope, first let approachL; this means

A2 = A1+ A1 A6,

(59)
0, = 61 + A6.
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L

FIG. 16. Two intersecting wave-front lines.

Substituting fon., from Eq. (59) in Eq. (58), and solving simultaneously with Eq. (57) fc
(X,Y), we obtain, forA6 — 0,

X = A1C0S0; — )»1/ sin@l,
Y=M Sin91 + )L]_/ C0SH;.

Second, replack; andd; by A(6) andd so as to represent all possible wave-angles in tt
envelope; in vector/matrix notation this gives

X\ _ [cos§ —sinf A(0)
(Y) - {sin@ cos@} (k’(@))' (60)
This is the equation for the wave-front envelope.

APPENDIX 2: VARIOUS EULER PRECONDITIONERS AND ARTIFICIAL
VISCOSITY MATRICES

The Van Leer—Lee—Roe preconditioner is

éMz —éM 0O
T T
Puir = M pt+l 00 ,
0 0 r 0
0 0 0 1
(61)
oeM?z —a% 00
M 1
-0 oz(——i—l) 00
PyLR__subotpimal = Y ,
VLR —subotpimal 0 0 /3 0
0 0 0 «

whereg = /|1 — M2|, t = B (B/M for supersonic), and = % for low M and 1 for high
M. The sub-optimal version was developed for reducing the flow-angle sensitivity.
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The Turkel preconditioner is

Pr

) PT—mod = 3 (62)

|
oom|§b°|§u:
O o o

0
0
1
0

= O O O

0
1
0
0

oo +~ O
o™ o o

with € > 0 for symmetrizability. In numerical tests, the original Turkel preconditioner i

used with setting the (3, 3) element to 1. The transpofg pfoduces no artificial vorticity.
The stagnation preconditioner is

M2 Mv1+M2 0 O

| -MV1I+ M2 (bp—-1HM?2 0 O
PstagstreamW|se— P (63)

0 0 10

0 0 0 1

whereby = 0 for the optimal wave pattern. The modified version is wigh- 1 for positive
definiteness and symmetrizability.

The ¢— preconditioner for all purposes is

M2 M
MEM o000
Mz
po—|F —F+1 00 (64)
0 0 B O
0 0 0 1

where; = —1forthe Van Leer preconditioner= 0 for the Turkel preconditioner, aigd= 1
for an approximation of the stagnation preconditioner k- 1.5 in the incompressible
limit.

The preconditioned residual computed by integration over a finite volume (a quadrilate
cell) is expressed conservatively for artificial viscosity,

4

~ 1
(PRegij = ——Pij > (®AS); (65)

" k=1

whereV, ; is the area of the cellh S is the length of théth cell face ®y is flux normal to
thekth cell face, andP; ; is the preconditioner which is evaluated at cell center.
For the conservative scheme, the modified flux becomes

1 1.
(I)?L?Igr,upwind = E(q)L + ®R) — §|Q|m0d(UR —Up), (66)

where the modified artificial-viscosity matri®2|m°d is defined as
Q2™ = MQ (P;5|P2pA | cosgyy — 0)] + Pz51PapA L cosgr —0)) QML (67)

whereQ, Q! are transformations between Cartesian coordinates and flow-aligned cc
dinates, andl, M~ are transformations between the different set of variables. In order
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avoid a stagnation instability problem, the factBrs' are needed to (more or less) cance
the preconditioning matrif?i,j multiplying the full residual.

For symmetrizing variables and stream-aligned coordind&@s and Py r—subotpimal
produce the artificial-viscosity matrices

IM®—1)+1

= 1 0 O
|556||52DA|||=35 1 M0 0f.
0 0O M O
0 0O 0 M
(68)
i
iva O 0
c1a ~ .| 0 0o 0o o
P>5IP2pA || = & 0 0 Mf 0
0 0 0 0

With the original Turkel preconditioner (assumiag = 1+ p2, otherwise different for-
mulas are obtained) [27-30],

1-M 0 0 0
Br
~ ~ ~ " ‘& 7A2 A~ ~ 2
BrdiBaoA = 2 | MY p/1-N® o o |,
0 0 M 0
0 0 0 M
(69)
1
F 000
5-11p. A | M 0 0 o0
PoalPapAL | =as | )
0 0B, O
0 0 0 O

Note that the optimal value g¢f; is M, which further simplifies the above formulas.
With Pstagstreamwisélo = 0), these matrices become

- ~2

~2
_M 1_M _ A 1+M O 0
M2/ 1-m?
A 1A - R 2 N ~2
P2|%|P2DA|||:as ﬁ My1-M" 0 O |;
0 0 M 0
0 0 0O M

(70)

P25IPpA | = &

O O Ozl
oo oo
o0 o
o9 oo
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For the all purpose—family preconditioner,

IM°-14+1 _ 2B(+D
M M(1+5) 1 00
o A _ Be+d M 0 O
PEI:DL“DZDA”' = dg (1+p8) R )
0 0O M O
0 0 0 M
(71)
B
500 0
A g A 0O 0 0O
P5IPapA | = & -
>oIP2DA L] = s 0 0 ﬂﬂ'vl 0
0O 0 0O
REFERENCES

1. S. R. AllmarasAnalysis of Semi-implicit Preconditioners for Multigrid Solution of the 2-d Compressible
Navier—Stokes Equation8IlAA Paper 95-1651-CP, 1995.

2. P.Buelow, S. Venkateswaran, and C. L. Merkle, The effect of grid aspect ratio on converg#iéé\ irPth
Computational Fluid Dynamics Conference, 1995

3. A. J. Chorin, A numerical method for solving incompressible viscous flow problén@ymput. Phys2
(1967).

4. D. L. Darmofal and P. J. Schmid, The importance of eigenvectors for local preconditioning of the Eu
equations,). Comput. Physl272) (1996).

5. H. Deconinck and G. Degrez, Monotone shock-capturing cell vertex schemes for the Euler and Nav
Stokes equations on unstructured gridsFifieenth International Conference on Numerical Methods in
Fluid MechanicqSpringer-Verlag, New York, 1996).

6. H. Deconinck, C. Hirsch, and J. Peuteman, Characteristic decomposition methods for the multidimensi
Euler equations, ihectures Notes in Physi¢Springer-Verlag, New York/Berlin, 1987), Vol. 264.

7. A. G. Godfrey,Topics on Spatially Accurate Methods and Preconditioning for the Navier—Stokes Equatio
with Finite-Rate ChemistryPh.D. thesis, VPI & SU, 1992.

8. A. G. Godfrey, private communication, 1994.
9. A. G. GodfreySteps Towards a Robust PreconditioniadAA Paper 94-0520, 1994.

10. A. G. Godfrey, R. W. Walters, and B. van Le®reconditioning for the Navier—Stokes Equations with
Finite-Rate ChemistryAIAA Paper 93-0535, 1993.

11. S. K. Godunov, An interesting class of quasilinear syst&nukl|. Akad. Nauk SSSE39, 521 (1961).

12. P. D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shockRemiesal
Conf. Ser. Appl. Math. SIAMI1, 521 (1973).

13. D. Lee,Local Preconditioning of the Euler and the Navier—Stokes EquatiBh<d. Thesis, University of
Michigan, 1996.

14. W.-T. LeeLocal Preconditioning of the Euler Equatiarh.D. thesis, University of Michigan, 1991.

14a. D. Lee, The Design of Local Navier—Stokes Preconditioning for CompressibleJ-iGamnput. Physl 44,

460 (1998).

15. J. F. LynnMultigrid Solution of the Euler Equations with Local Preconditionifth.D. thesis, University
of Michigan, 1995.

16. C.L.Merkle and Y.-H. Choi, Computation of low-speed compressible flows with time-marching procedur
Int. J. Numer. Methods Eng5, 293 (1988).



17

18.

19.
20.

21.

22.

23.

24.

25.
26.
27.
28.

29.

30.

31.

32.

33.

34.

35.

EULER PRECONDITIONER DESIGN 459

. L. M. MesarosMulti-Dimensional Fluctuation Splitting Schemes for the Euler Equations on Unstructur
Grids, Ph.D. thesis, University of Michigan, 1995.

L. M. Mesaros and P. L. Ro&ultidimensional Fluctuation-Splitting Schemes Based on Decompositi
Methods AIAA Paper 95-1699, 1995.

J.-D. Miller, On Triangles and FlowPh.D. thesis, University of Michigan, 1995.

H. Pai€re, H. Deconinck, R. Struijs, P. L. Roe, L. M. Mesaros, and J.-Dlléd Computations of Inviscid
Compressible Flows Using Fluctuation-Splitting on Triangular Mesie¢8A Paper 93-3301, 1993.

N. A. Pierce and M. B. Gile®reconditioning Compressible Flow Calculations on Stretched MestiA#\
Paper 96-0889, 1996.

Y. Saad and M. H. Schult&@MRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetr
Linear SystemdResearch Report YALEU/DCS/RR-254, Yale University Department of Computer Scien
1983.

S. P. Spekreijseyultigrid Solution of the Steady Euler Equatiqri2h.D. thesis, Technische Universiteit
Delft (Centrum voor Wiskunde en Informatica (CWI), Amsterdam, 1987).

R. Struijs, H. Deconinck, and P. L. Roe, Fluctuation splitting for the 2-D Euler equatid@eniputational
Fluid Dynamics(Von Karmén Institute for Fluid Dynamics, Lecture Series 1991-01, 1991).

S. Ta’asanCanonical Forms of Multidimensional Inviscid FIon€ASE Report 93-34, 1993.

C.-H. TaiAcceleration Techniques for Explicit Euler Cod@#1.D. thesis, University of Michigan, 1990.

E. Turkel Acceleration to a Steady State for the Euler Equatid8ASE Report 84-32, 1984.

E. Turkel Preconditioned Methods for Solving the Incompressible and Low Speed Compressible Equat
ICASE Report 86-14, 1986.

E. Turkel, Preconditioned methods for solving the incompressible and low speed compressible eque
J. Comput. Phys/2 (1987).

E. Turkel, A. Fiterman, and B. van LeBreconditioning and the Limit to the Incompressible Flow Equations
ICASE Report 93-42, 1993.

B. van Leer, W. T. Lee, and P. L. Roe, Characteristic time-stepping or local preconditioning of the E
equations, irAIAA 10th Computational Fluid Dynamics Conference, 1991

B. van Leer, L. Mesaros, C.-H. Tai, and E. Turkel, Local preconditioning in a stagnation pdigthiAlAA
Computational Fluid Dynamics Conferen@®AA Report AIAA-95-1654-CP, 1995), p. 88.

S. Venkateswaran and C. L. Merkle, Analysis of time-derivative preconditioning for the navier-stokes e
tions, in6th International Symposium on Computational Fluid Dynamics, 1995

H. Viviand, Pseudo-unsteady systems for steady inviscid flow calculatioNsinrerical Methods for the
Euler Equations of Fluid Dynamics, 1985

L. B. Wigton, N. J. Yu, and D. P. Young, GMRES acceleration of computational fluid dynamics codes
AIAA 7th Computational Fluid Dynamics Conference, 1985



